mul_op.cc 10.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19

20
#include "paddle/fluid/framework/op_registry.h"
P
Physher 已提交
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24

C
Chen Weihang 已提交
25 26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
29 30 31
namespace paddle {
namespace operators {

32
using framework::OpKernelType;
D
dongzhihong 已提交
33 34
using framework::Tensor;

35 36 37
constexpr int kMULMKLDNNINT8 = 1;
constexpr int kMULMKLDNNFP32 = 2;

38
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
39
 public:
40 41
  using framework::OperatorWithKernel::OperatorWithKernel;

P
Physher 已提交
42 43 44 45 46 47
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
48
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
49 50
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
51
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
Physher 已提交
52 53 54
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

55 56
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
57
        customized_type_value = kMULMKLDNNINT8;
58 59 60 61 62 63
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
P
Physher 已提交
64 65 66 67
      }
    }
#endif

68 69 70 71 72
    return framework::OpKernelType(input_data_type,
                                   ctx.GetPlace(),
                                   layout,
                                   library,
                                   customized_type_value);
P
Physher 已提交
73
  }
74 75
};

D
dongzhihong 已提交
76
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
77
 public:
Y
Yu Yang 已提交
78
  void Make() override {
C
caoying03 已提交
79 80 81
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
F
WIP  
fengjiayi 已提交
82
    AddAttr<int>(
F
fengjiayi 已提交
83
        "x_num_col_dims",
C
caoying03 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
99
        )DOC")
F
WIP  
fengjiayi 已提交
100
        .SetDefault(1)
F
fengjiayi 已提交
101
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
102
    AddAttr<int>(
F
fengjiayi 已提交
103
        "y_num_col_dims",
C
caoying03 已提交
104 105 106 107
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
108
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
109
        )DOC")
F
WIP  
fengjiayi 已提交
110
        .SetDefault(1)
F
fengjiayi 已提交
111
        .EqualGreaterThan(1);
112
    AddComment(R"DOC(
C
caoying03 已提交
113
Mul Operator.
K
kexinzhao 已提交
114

C
caoying03 已提交
115
This operator is used to perform matrix multiplication for input $X$ and $Y$.
116

117 118
The equation is:

C
caoying03 已提交
119
$$Out = X * Y$$
120

C
caoying03 已提交
121 122
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
123

124 125 126 127
)DOC");
  }
};

C
chengduo 已提交
128 129
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
130
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
131
      const override {
132 133
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
134 135 136
  }
};

137
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
138 139 140
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
        customized_type_value = kMULMKLDNNINT8;
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
      }
    }
#endif

167 168 169 170 171
    return framework::OpKernelType(input_data_type,
                                   ctx.GetPlace(),
                                   layout,
                                   library,
                                   customized_type_value);
172
  }
D
dongzhihong 已提交
173 174
};

H
hong 已提交
175 176
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
177
 public:
H
hong 已提交
178
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
179 180

 protected:
181
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
182
    retv->SetType("mul_grad");
H
hong 已提交
183 184 185 186 187 188
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
189 190 191
  }
};

192 193 194 195 196
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
197 198 199
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
200

L
lvmengsi 已提交
201 202
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
203 204 205
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
206 207
      ctx->ShareDim("X", "DX");
    }
208
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
209 210 211 212 213
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
214 215
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
216
 public:
H
hong 已提交
217
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
218 219

 protected:
220
  void Apply(GradOpPtr<T> retv) const override {
221 222
    retv->SetType("mul_grad_grad");

H
hong 已提交
223 224 225 226 227
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
228

H
hong 已提交
229 230
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
231

L
lvmengsi 已提交
232
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
233
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
234
    }
235 236 237 238
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
239

H
hong 已提交
240
    retv->SetAttrMap(this->Attrs());
241 242 243
  }
};

244 245 246
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
247
namespace ops = paddle::operators;
248 249
DECLARE_INFER_SHAPE_FUNCTOR(mul,
                            MulInferShapeFunctor,
C
Chen Weihang 已提交
250
                            PD_INFER_META(phi::MatmulWithFlattenInferMeta));
251 252 253 254
REGISTER_OPERATOR(mul,
                  ops::MulOp,
                  ops::MulOpMaker,
                  ops::MulOpInferVarType,
H
hong 已提交
255
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
256 257
                  ops::MulOpGradMaker<paddle::imperative::OpBase>,
                  MulInferShapeFunctor);
P
Physher 已提交
258

259 260
DECLARE_INFER_SHAPE_FUNCTOR(mul_grad,
                            MulGradInferShapeFunctor,
C
Chen Weihang 已提交
261
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
262 263
REGISTER_OPERATOR(mul_grad,
                  ops::MulGradOp,
H
hong 已提交
264
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
265 266
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>,
                  MulGradInferShapeFunctor);
P
Physher 已提交
267

268
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);