sequence_expand_op.cc 9.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_expand_op.h"
16
#include <memory>
W
wanghaoshuang 已提交
17 18 19 20

namespace paddle {
namespace operators {

Y
yangyaming 已提交
21
using framework::LoDTensor;
W
wanghaoshuang 已提交
22

W
wanghaoshuang 已提交
23
class SequenceExpandOp : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
24 25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
29 30 31 32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceExpandOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
37
    auto out_dims = x_dims;
Y
yangyaming 已提交
38 39
    int ref_level = ctx->Attrs().Get<int>("ref_level");

Y
yangyaming 已提交
40 41
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Dimension number of Input(X) should be at least 2.");
Y
yangyaming 已提交
42 43 44 45 46 47 48 49 50 51

    if (ctx->IsRuntime()) {
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
      framework::Variable* y_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Y")[0]);

      auto& x_lod = x_var->Get<LoDTensor>().lod();
      auto& y_lod = y_var->Get<LoDTensor>().lod();

T
tensor-tang 已提交
52
      PADDLE_ENFORCE_LE(x_lod.size(), 1UL,
Y
yangyaming 已提交
53
                        "Level number of Input(X)'s lod should not be "
Y
yangyaming 已提交
54
                        "greater than 1.");
T
tensor-tang 已提交
55
      PADDLE_ENFORCE_GT(y_lod.size(), 0UL,
Y
yangyaming 已提交
56 57 58 59 60 61 62 63 64 65
                        "Level number of Input(Y)'s lod should be "
                        "greater than 0.");
      PADDLE_ENFORCE(
          ref_level == -1 ||
              (ref_level >= 0 && ref_level < static_cast<int>(y_lod.size())),
          "Invlid `ref_level`, which should be either equal to -1 "
          "or in [0, %d)",
          y_lod.size());

      if (ref_level == -1) ref_level = y_lod.size() - 1;
Y
yangyaming 已提交
66

Y
yangyaming 已提交
67
      if (x_lod.size() > 0) {
Y
yangyaming 已提交
68 69 70 71
        PADDLE_ENFORCE(x_lod[0].size() == y_lod[ref_level].size(),
                       "Level number of Input(X)'s lod could be 0. Otherwise "
                       "size of Input(X)'s first level lod should be equal to "
                       "size of Input(Y)'s referred level lod.");
72
      } else {
T
tensor-tang 已提交
73 74
        PADDLE_ENFORCE_EQ(x_dims[0],
                          static_cast<int64_t>(y_lod[ref_level].size()) - 1,
75 76 77
                          "When Input(X)'s lod is null, the dims[0] of "
                          "Input(X) should match the "
                          "size of Input(Y)'s referred level lod.");
Y
yangyaming 已提交
78 79
      }

Y
yangyaming 已提交
80
      int64_t out_first_dim = 0;
Y
yangyaming 已提交
81
      if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
82 83
        out_first_dim = x_dims[0];
      } else {
Y
yangyaming 已提交
84 85 86 87
        for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
          int x_seq_len = 1;
          if (x_lod.size() == 1) {
            x_seq_len = x_lod[0][i] - x_lod[0][i - 1];
Y
yangyaming 已提交
88
          }
Y
yangyaming 已提交
89 90
          out_first_dim +=
              (y_lod[ref_level][i] - y_lod[ref_level][i - 1]) * x_seq_len;
Y
yangyaming 已提交
91 92
        }
      }
Y
yangyaming 已提交
93
      out_dims[0] = out_first_dim;
Y
yangyaming 已提交
94
    } else {
Y
yangyaming 已提交
95
      out_dims[0] = -1;
Y
yangyaming 已提交
96
    }
D
dzhwinter 已提交
97 98
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
W
wanghaoshuang 已提交
99
  }
100 101 102

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
103 104
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
105
  }
W
wanghaoshuang 已提交
106 107
};

W
wanghaoshuang 已提交
108
class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
109
 public:
Y
Yu Yang 已提交
110
  void Make() override {
W
wanghaoshuang 已提交
111
    AddInput("X",
Y
yangyaming 已提交
112 113
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor whose lod "
             "level is at most 1.");
W
wanghaoshuang 已提交
114
    AddInput("Y",
Y
yangyaming 已提交
115 116
             "(LoDTensor, default LoDTensor<float>) Referred LoDTensor whose "
             "lod (specified level) is referred by Input(X).");
W
wanghaoshuang 已提交
117
    AddOutput("Out",
Y
yangyaming 已提交
118 119
              "(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
              "generated from Input(X) by referring lod of Input(Y).");
Y
yangyaming 已提交
120
    AddAttr<int>("ref_level", "Specify lod level of Input(Y).").SetDefault(-1);
W
wanghaoshuang 已提交
121
    AddComment(R"DOC(
W
wanghaoshuang 已提交
122
Sequence Expand Operator.
W
wanghaoshuang 已提交
123

Y
yangyaming 已提交
124 125 126 127 128 129 130
This operator expands `X` according to specified level lod of `Y`. Current
implementation constaints that lod level of `X` should be at most 1. Attribute
`ref_level` is used to specify which level lod of `Y` is referred to expand `X`.
If set `ref_level` to -1, then last level lod of `Y` would be referred.
Please note, rank of `X` should be at least 2, when the rank exceeds 2, `X`
would be viewed as a 2-D tensor.

131
Following are cases to better explain how this works:
Y
yangyaming 已提交
132

W
wanghaoshuang 已提交
133
Case 1:
W
wanghaoshuang 已提交
134

Y
yangyaming 已提交
135 136 137
Given a 1-level LoDTensor input(X)
    X.lod =  [[0,   2,        4]]
    X.data = [[a], [b], [c], [d]]
W
wanghaoshuang 已提交
138 139 140 141
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 7, 8]]
Y
yangyaming 已提交
142 143 144 145
ref_level: 0
then we get 1-level LoDTensor
    Out.lod =  [[0,   2,        4,        6,        8]]
    Out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
W
wanghaoshuang 已提交
146
    Out.dims = [8, 1]
W
wanghaoshuang 已提交
147 148 149

Case 2:

Y
yangyaming 已提交
150 151 152 153 154 155 156 157 158
Given 1-level LoDTensor input(X)
    X.lod =  [[0,   1,        4]]
    X.data = [[a], [b], [c], [d]]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 6, 8]]
ref_level: 0
then we get 1-level LoDTensor
159
    Out.lod =  [[0,   1,   2,        5,             8]]
Y
yangyaming 已提交
160 161 162 163 164
    Out.data = [[a], [a], [b], [c], [d], [b], [c], [d]]
    Out.dims = [8, 1]

Case 3:

W
wanghaoshuang 已提交
165
Given a common Tensor input(X)
Y
yangyaming 已提交
166
    X.data = [[a], [b], [c]]
W
wanghaoshuang 已提交
167 168 169
    X.dims = [3, 1]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
170
ref_level: -1
171
then we get a common Tensor
Y
yangyaming 已提交
172
    Out.data = [[a], [a], [b], [c], [c], [c]]
W
wanghaoshuang 已提交
173
    Out.dims = [6, 1]
W
wanghaoshuang 已提交
174

Y
yangyaming 已提交
175
Case 4:
W
wanghaoshuang 已提交
176

W
wanghaoshuang 已提交
177
Given a common Tensor input(X)
W
wanghaoshuang 已提交
178 179 180 181
    X.data = [[a, b], [c, d], [e, f]]
    X.dims = [3, 2]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
182 183 184
ref_level: 0
then we get a common LoDTensor
    Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
W
wanghaoshuang 已提交
185 186
    Out.dims = [6, 2]

W
wanghaoshuang 已提交
187 188 189 190
)DOC");
  }
};

W
wanghaoshuang 已提交
191
class SequenceExpandOpGrad : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
192 193 194 195 196
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
197
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
W
wanghaoshuang 已提交
198
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
Y
yangyaming 已提交
199 200
                   "Input(Out@GRAD) should not be null.");

W
wanghaoshuang 已提交
201 202
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
Y
yangyaming 已提交
203

W
wanghaoshuang 已提交
204 205 206 207
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
208 209 210

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
211 212 213
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
214
  }
W
wanghaoshuang 已提交
215 216
};

H
hong 已提交
217 218
template <typename T>
class SequenceExpandOpGradMaker : public framework::SingleGradOpMaker<T> {
219
 public:
H
hong 已提交
220
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
221 222

 protected:
H
hong 已提交
223 224
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
225
    op->SetType("sequence_expand_grad");
H
hong 已提交
226 227 228 229 230
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
231 232 233 234 235 236 237 238 239
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(SequenceExpandOpNoNeedBufferVarsInference,
                                      "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequenceExpandGradOpNoNeedBufferVarsInference, "X", "Y");

W
wanghaoshuang 已提交
240 241 242 243
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
244 245
REGISTER_OPERATOR(sequence_expand, ops::SequenceExpandOp,
                  ops::SequenceExpandOpMaker,
H
hong 已提交
246 247
                  ops::SequenceExpandOpGradMaker<paddle::framework::OpDesc>,
                  ops::SequenceExpandOpGradMaker<paddle::imperative::OpBase>,
248 249 250
                  ops::SequenceExpandOpNoNeedBufferVarsInference);
REGISTER_OPERATOR(sequence_expand_grad, ops::SequenceExpandOpGrad,
                  ops::SequenceExpandGradOpNoNeedBufferVarsInference);
Q
QI JUN 已提交
251
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
252
    sequence_expand,
Y
yangyaming 已提交
253 254 255 256
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int64_t>);
W
wanghaoshuang 已提交
257
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
258
    sequence_expand_grad,
Y
yangyaming 已提交
259 260 261 262
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int64_t>);