sequence_expand_op.cc 7.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_expand_op.h"
W
wanghaoshuang 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
yangyaming 已提交
20
using framework::LoDTensor;
W
wanghaoshuang 已提交
21

W
wanghaoshuang 已提交
22
class SequenceExpandOp : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceExpandOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
36
    auto out_dims = x_dims;
Y
yangyaming 已提交
37 38
    int ref_level = ctx->Attrs().Get<int>("ref_level");

Y
yangyaming 已提交
39 40
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Dimension number of Input(X) should be at least 2.");
Y
yangyaming 已提交
41 42 43 44 45 46 47 48 49 50

    if (ctx->IsRuntime()) {
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
      framework::Variable* y_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Y")[0]);

      auto& x_lod = x_var->Get<LoDTensor>().lod();
      auto& y_lod = y_var->Get<LoDTensor>().lod();

T
tensor-tang 已提交
51
      PADDLE_ENFORCE_LE(x_lod.size(), 1UL,
Y
yangyaming 已提交
52
                        "Level number of Input(X)'s lod should not be "
Y
yangyaming 已提交
53
                        "greater than 1.");
T
tensor-tang 已提交
54
      PADDLE_ENFORCE_GT(y_lod.size(), 0UL,
Y
yangyaming 已提交
55 56 57 58 59 60 61 62 63 64
                        "Level number of Input(Y)'s lod should be "
                        "greater than 0.");
      PADDLE_ENFORCE(
          ref_level == -1 ||
              (ref_level >= 0 && ref_level < static_cast<int>(y_lod.size())),
          "Invlid `ref_level`, which should be either equal to -1 "
          "or in [0, %d)",
          y_lod.size());

      if (ref_level == -1) ref_level = y_lod.size() - 1;
Y
yangyaming 已提交
65

Y
yangyaming 已提交
66
      if (x_lod.size() > 0) {
Y
yangyaming 已提交
67 68 69 70
        PADDLE_ENFORCE(x_lod[0].size() == y_lod[ref_level].size(),
                       "Level number of Input(X)'s lod could be 0. Otherwise "
                       "size of Input(X)'s first level lod should be equal to "
                       "size of Input(Y)'s referred level lod.");
71
      } else {
T
tensor-tang 已提交
72 73
        PADDLE_ENFORCE_EQ(x_dims[0],
                          static_cast<int64_t>(y_lod[ref_level].size()) - 1,
74 75 76
                          "When Input(X)'s lod is null, the dims[0] of "
                          "Input(X) should match the "
                          "size of Input(Y)'s referred level lod.");
Y
yangyaming 已提交
77 78
      }

Y
yangyaming 已提交
79
      int64_t out_first_dim = 0;
Y
yangyaming 已提交
80
      if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
81 82
        out_first_dim = x_dims[0];
      } else {
Y
yangyaming 已提交
83 84 85 86
        for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
          int x_seq_len = 1;
          if (x_lod.size() == 1) {
            x_seq_len = x_lod[0][i] - x_lod[0][i - 1];
Y
yangyaming 已提交
87
          }
Y
yangyaming 已提交
88 89
          out_first_dim +=
              (y_lod[ref_level][i] - y_lod[ref_level][i - 1]) * x_seq_len;
Y
yangyaming 已提交
90 91
        }
      }
Y
yangyaming 已提交
92
      out_dims[0] = out_first_dim;
Y
yangyaming 已提交
93
    } else {
Y
yangyaming 已提交
94
      out_dims[0] = -1;
Y
yangyaming 已提交
95
    }
D
dzhwinter 已提交
96 97
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
W
wanghaoshuang 已提交
98 99 100
  }
};

W
wanghaoshuang 已提交
101
class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
102
 public:
Y
Yu Yang 已提交
103
  void Make() override {
W
wanghaoshuang 已提交
104
    AddInput("X",
Y
yangyaming 已提交
105 106
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor whose lod "
             "level is at most 1.");
W
wanghaoshuang 已提交
107
    AddInput("Y",
Y
yangyaming 已提交
108 109
             "(LoDTensor, default LoDTensor<float>) Referred LoDTensor whose "
             "lod (specified level) is referred by Input(X).");
W
wanghaoshuang 已提交
110
    AddOutput("Out",
Y
yangyaming 已提交
111 112
              "(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
              "generated from Input(X) by referring lod of Input(Y).");
Y
yangyaming 已提交
113
    AddAttr<int>("ref_level", "Specify lod level of Input(Y).").SetDefault(-1);
W
wanghaoshuang 已提交
114
    AddComment(R"DOC(
W
wanghaoshuang 已提交
115
Sequence Expand Operator.
W
wanghaoshuang 已提交
116

Y
yangyaming 已提交
117 118 119 120 121 122 123
This operator expands `X` according to specified level lod of `Y`. Current
implementation constaints that lod level of `X` should be at most 1. Attribute
`ref_level` is used to specify which level lod of `Y` is referred to expand `X`.
If set `ref_level` to -1, then last level lod of `Y` would be referred.
Please note, rank of `X` should be at least 2, when the rank exceeds 2, `X`
would be viewed as a 2-D tensor.

124
Following are cases to better explain how this works:
Y
yangyaming 已提交
125

W
wanghaoshuang 已提交
126
Case 1:
W
wanghaoshuang 已提交
127

Y
yangyaming 已提交
128 129 130
Given a 1-level LoDTensor input(X)
    X.lod =  [[0,   2,        4]]
    X.data = [[a], [b], [c], [d]]
W
wanghaoshuang 已提交
131 132 133 134
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 7, 8]]
Y
yangyaming 已提交
135 136 137 138
ref_level: 0
then we get 1-level LoDTensor
    Out.lod =  [[0,   2,        4,        6,        8]]
    Out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
W
wanghaoshuang 已提交
139
    Out.dims = [8, 1]
W
wanghaoshuang 已提交
140 141 142

Case 2:

Y
yangyaming 已提交
143 144 145 146 147 148 149 150 151
Given 1-level LoDTensor input(X)
    X.lod =  [[0,   1,        4]]
    X.data = [[a], [b], [c], [d]]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 6, 8]]
ref_level: 0
then we get 1-level LoDTensor
152
    Out.lod =  [[0,   1,   2,        5,             8]]
Y
yangyaming 已提交
153 154 155 156 157
    Out.data = [[a], [a], [b], [c], [d], [b], [c], [d]]
    Out.dims = [8, 1]

Case 3:

W
wanghaoshuang 已提交
158
Given a common Tensor input(X)
Y
yangyaming 已提交
159
    X.data = [[a], [b], [c]]
W
wanghaoshuang 已提交
160 161 162
    X.dims = [3, 1]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
163
ref_level: -1
164
then we get a common Tensor
Y
yangyaming 已提交
165
    Out.data = [[a], [a], [b], [c], [c], [c]]
W
wanghaoshuang 已提交
166
    Out.dims = [6, 1]
W
wanghaoshuang 已提交
167

Y
yangyaming 已提交
168
Case 4:
W
wanghaoshuang 已提交
169

W
wanghaoshuang 已提交
170
Given a common Tensor input(X)
W
wanghaoshuang 已提交
171 172 173 174
    X.data = [[a, b], [c, d], [e, f]]
    X.dims = [3, 2]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
175 176 177
ref_level: 0
then we get a common LoDTensor
    Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
W
wanghaoshuang 已提交
178 179
    Out.dims = [6, 2]

W
wanghaoshuang 已提交
180 181 182 183
)DOC");
  }
};

W
wanghaoshuang 已提交
184
class SequenceExpandOpGrad : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
185 186 187 188 189
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
190 191
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should not be null.");
W
wanghaoshuang 已提交
192
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
Y
yangyaming 已提交
193 194
                   "Input(Out@GRAD) should not be null.");

W
wanghaoshuang 已提交
195 196
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
Y
yangyaming 已提交
197

W
wanghaoshuang 已提交
198 199 200 201 202 203 204 205 206 207
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
208 209
REGISTER_OPERATOR(sequence_expand, ops::SequenceExpandOp,
                  ops::SequenceExpandOpMaker,
210 211
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(sequence_expand_grad, ops::SequenceExpandOpGrad);
Q
QI JUN 已提交
212
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
213
    sequence_expand,
Y
yangyaming 已提交
214 215 216 217
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int64_t>);
W
wanghaoshuang 已提交
218
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
219
    sequence_expand_grad,
Y
yangyaming 已提交
220 221 222 223
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int64_t>);