sequence_expand_op.cc 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_expand_op.h"
W
wanghaoshuang 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
yangyaming 已提交
20
using framework::LoDTensor;
W
wanghaoshuang 已提交
21

W
wanghaoshuang 已提交
22
class SequenceExpandOp : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceExpandOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
36
    auto out_dims = x_dims;
Y
yangyaming 已提交
37 38
    int ref_level = ctx->Attrs().Get<int>("ref_level");

Y
yangyaming 已提交
39 40
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Dimension number of Input(X) should be at least 2.");
Y
yangyaming 已提交
41 42 43 44 45 46 47 48 49 50 51

    if (ctx->IsRuntime()) {
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
      framework::Variable* y_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Y")[0]);

      auto& x_lod = x_var->Get<LoDTensor>().lod();
      auto& y_lod = y_var->Get<LoDTensor>().lod();

      PADDLE_ENFORCE_LE(x_lod.size(), 1,
Y
yangyaming 已提交
52
                        "Level number of Input(X)'s lod should not be "
Y
yangyaming 已提交
53
                        "greater than 1.");
Y
yangyaming 已提交
54 55 56 57 58 59 60 61 62 63 64
      PADDLE_ENFORCE_GT(y_lod.size(), 0,
                        "Level number of Input(Y)'s lod should be "
                        "greater than 0.");
      PADDLE_ENFORCE(
          ref_level == -1 ||
              (ref_level >= 0 && ref_level < static_cast<int>(y_lod.size())),
          "Invlid `ref_level`, which should be either equal to -1 "
          "or in [0, %d)",
          y_lod.size());

      if (ref_level == -1) ref_level = y_lod.size() - 1;
Y
yangyaming 已提交
65

Y
yangyaming 已提交
66
      if (x_lod.size() > 0) {
Y
yangyaming 已提交
67 68 69 70
        PADDLE_ENFORCE(x_lod[0].size() == y_lod[ref_level].size(),
                       "Level number of Input(X)'s lod could be 0. Otherwise "
                       "size of Input(X)'s first level lod should be equal to "
                       "size of Input(Y)'s referred level lod.");
71 72 73 74 75
      } else {
        PADDLE_ENFORCE_EQ(x_dims[0], y_lod[ref_level].size() - 1,
                          "When Input(X)'s lod is null, the dims[0] of "
                          "Input(X) should match the "
                          "size of Input(Y)'s referred level lod.");
Y
yangyaming 已提交
76 77
      }

Y
yangyaming 已提交
78
      int64_t out_first_dim = 0;
Y
yangyaming 已提交
79
      if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
80 81
        out_first_dim = x_dims[0];
      } else {
Y
yangyaming 已提交
82 83 84 85
        for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
          int x_seq_len = 1;
          if (x_lod.size() == 1) {
            x_seq_len = x_lod[0][i] - x_lod[0][i - 1];
Y
yangyaming 已提交
86
          }
Y
yangyaming 已提交
87 88
          out_first_dim +=
              (y_lod[ref_level][i] - y_lod[ref_level][i - 1]) * x_seq_len;
Y
yangyaming 已提交
89 90
        }
      }
Y
yangyaming 已提交
91
      out_dims[0] = out_first_dim;
Y
yangyaming 已提交
92
    } else {
Y
yangyaming 已提交
93
      out_dims[0] = -1;
Y
yangyaming 已提交
94
    }
D
dzhwinter 已提交
95 96
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
W
wanghaoshuang 已提交
97 98 99
  }
};

W
wanghaoshuang 已提交
100
class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
101
 public:
Y
Yu Yang 已提交
102
  void Make() override {
W
wanghaoshuang 已提交
103
    AddInput("X",
Y
yangyaming 已提交
104 105
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor whose lod "
             "level is at most 1.");
W
wanghaoshuang 已提交
106
    AddInput("Y",
Y
yangyaming 已提交
107 108
             "(LoDTensor, default LoDTensor<float>) Referred LoDTensor whose "
             "lod (specified level) is referred by Input(X).");
W
wanghaoshuang 已提交
109
    AddOutput("Out",
Y
yangyaming 已提交
110 111
              "(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
              "generated from Input(X) by referring lod of Input(Y).");
Y
yangyaming 已提交
112
    AddAttr<int>("ref_level", "Specify lod level of Input(Y).").SetDefault(-1);
W
wanghaoshuang 已提交
113
    AddComment(R"DOC(
W
wanghaoshuang 已提交
114
Sequence Expand Operator.
W
wanghaoshuang 已提交
115

Y
yangyaming 已提交
116 117 118 119 120 121 122
This operator expands `X` according to specified level lod of `Y`. Current
implementation constaints that lod level of `X` should be at most 1. Attribute
`ref_level` is used to specify which level lod of `Y` is referred to expand `X`.
If set `ref_level` to -1, then last level lod of `Y` would be referred.
Please note, rank of `X` should be at least 2, when the rank exceeds 2, `X`
would be viewed as a 2-D tensor.

123
Following are cases to better explain how this works:
Y
yangyaming 已提交
124

W
wanghaoshuang 已提交
125
Case 1:
W
wanghaoshuang 已提交
126

Y
yangyaming 已提交
127 128 129
Given a 1-level LoDTensor input(X)
    X.lod =  [[0,   2,        4]]
    X.data = [[a], [b], [c], [d]]
W
wanghaoshuang 已提交
130 131 132 133
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 7, 8]]
Y
yangyaming 已提交
134 135 136 137
ref_level: 0
then we get 1-level LoDTensor
    Out.lod =  [[0,   2,        4,        6,        8]]
    Out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
W
wanghaoshuang 已提交
138
    Out.dims = [8, 1]
W
wanghaoshuang 已提交
139 140 141

Case 2:

Y
yangyaming 已提交
142 143 144 145 146 147 148 149 150
Given 1-level LoDTensor input(X)
    X.lod =  [[0,   1,        4]]
    X.data = [[a], [b], [c], [d]]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 6, 8]]
ref_level: 0
then we get 1-level LoDTensor
151
    Out.lod =  [[0,   1,   2,        5,             8]]
Y
yangyaming 已提交
152 153 154 155 156
    Out.data = [[a], [a], [b], [c], [d], [b], [c], [d]]
    Out.dims = [8, 1]

Case 3:

W
wanghaoshuang 已提交
157
Given a common Tensor input(X)
Y
yangyaming 已提交
158
    X.data = [[a], [b], [c]]
W
wanghaoshuang 已提交
159 160 161
    X.dims = [3, 1]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
162
ref_level: -1
163
then we get a common Tensor
Y
yangyaming 已提交
164
    Out.data = [[a], [a], [b], [c], [c], [c]]
W
wanghaoshuang 已提交
165
    Out.dims = [6, 1]
W
wanghaoshuang 已提交
166

Y
yangyaming 已提交
167
Case 4:
W
wanghaoshuang 已提交
168

W
wanghaoshuang 已提交
169
Given a common Tensor input(X)
W
wanghaoshuang 已提交
170 171 172 173
    X.data = [[a, b], [c, d], [e, f]]
    X.dims = [3, 2]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
174 175 176
ref_level: 0
then we get a common LoDTensor
    Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
W
wanghaoshuang 已提交
177 178
    Out.dims = [6, 2]

W
wanghaoshuang 已提交
179 180 181 182
)DOC");
  }
};

W
wanghaoshuang 已提交
183
class SequenceExpandOpGrad : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
184 185 186 187 188
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
189 190
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should not be null.");
W
wanghaoshuang 已提交
191
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
Y
yangyaming 已提交
192 193
                   "Input(Out@GRAD) should not be null.");

W
wanghaoshuang 已提交
194 195
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
Y
yangyaming 已提交
196

W
wanghaoshuang 已提交
197 198 199 200 201 202 203 204 205 206
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
207 208
REGISTER_OPERATOR(sequence_expand, ops::SequenceExpandOp,
                  ops::SequenceExpandOpMaker,
209 210
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(sequence_expand_grad, ops::SequenceExpandOpGrad);
Q
QI JUN 已提交
211
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
212
    sequence_expand,
Y
yangyaming 已提交
213 214 215 216
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int64_t>);
W
wanghaoshuang 已提交
217
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
218
    sequence_expand_grad,
Y
yangyaming 已提交
219 220 221 222
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int64_t>);