group_norm_op.cc 9.5 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/group_norm_op.h"
L
liuwei1031 已提交
16
#include <memory>
17
#include <string>
L
liuwei1031 已提交
18
#include <unordered_map>
19
#include <vector>
D
Dun 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class GroupNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"),
                   "Output(Y) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mean"),
                   "Output(Mean) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Variance"),
                   "Output(Variance) of GroupNormOp should not be null.");
    auto x_dim = ctx->GetInputDim("X");
42 43 44 45
    const std::string data_layout_str =
        ctx->Attrs().Get<std::string>("data_layout");
    const framework::DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
46 47
    const int64_t channel_num =
        (data_layout == DataLayout::kNCHW ? x_dim[1] : x_dim[x_dim.size() - 1]);
D
Dun 已提交
48 49 50 51
    auto batch_size = x_dim[0];
    auto groups = ctx->Attrs().Get<int>("groups");
    PADDLE_ENFORCE_LE(
        groups, channel_num,
52 53 54 55 56 57 58 59 60 61
        "ValueError: the Attr(groups) of Op(group_norm) must be less than or "
        "equal to the number of channels. "
        "But received: groups is [%s], channels is [%s], the Attr(data_layout) "
        "is [%s]. The error may come from wrong data_layout setting.",
        groups, channel_num, data_layout_str);
    PADDLE_ENFORCE_GE(
        groups, 1,
        "ValueError: the Attr(groups) of Op(group_norm) must be "
        "greater than or equal to 1. But received: groups is [%s].",
        groups);
D
Dun 已提交
62 63

    if (ctx->HasInput("Scale")) {
64 65 66 67 68 69 70 71 72 73 74 75 76 77
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Scale").size(), 1UL,
          "ShapeError: the Input(Scale) of Op(group_norm) should be 1-D "
          "Tensor. "
          "But received: %u-D Tensor, the shape of Input(Scale) is [%s].",
          ctx->GetInputDim("Scale").size(), ctx->GetInputDim("Scale"));
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Scale")[0], channel_num,
          "ShapeError: the Input(Scale)'s first dimension size of "
          "Op(group_norm) must be equal to the number of channels. "
          "But received: the Input(Scale)'s first dimension size is [%s], the "
          "channels is [%s], the Attr(data_layout) is [%s]. The error may come "
          "from wrong data_layout setting.",
          ctx->GetInputDim("Scale")[0], channel_num, data_layout_str);
D
Dun 已提交
78 79
    }
    if (ctx->HasInput("Bias")) {
80 81 82 83 84 85 86 87 88 89 90 91 92
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Bias").size(), 1UL,
          "ShapeError: the Input(Bias) of Op(group_norm) should be 1-D Tensor. "
          "But received: %u-D Tensor, the shape of Input(Bias) is [%s].",
          ctx->GetInputDim("Bias").size(), ctx->GetInputDim("Bias"));
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Bias")[0], channel_num,
          "ShapeError: the Input(Bias)'s first dimension size of "
          "Op(group_norm) must be equal to the number of channels. "
          "But received: the Input(Bias)'s first dimension size is [%s], the "
          "channels is [%s], the Attr(data_layout) is [%s]. The error may come "
          "from wrong data_layout setting.",
          ctx->GetInputDim("Bias")[0], channel_num, data_layout_str);
D
Dun 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    }

    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    ctx->SetOutputDim("Mean", {batch_size, groups});
    ctx->SetOutputDim("Variance", {batch_size, groups});
    ctx->ShareLoD("X", "Y");
  }
};

class GroupNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C"
             "that is applied to the output.")
        .AsDispensable();
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of each group.").AsIntermediate();
    AddOutput("Variance", "Variance of each group.").AsIntermediate();

    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 1.0f,
                         "'epsilon' should be between 0.0 and 1.0.");
        });
    AddAttr<int>("groups", "The number of groups that divided from channels.")
        .AddCustomChecker([](const int &groups) {
          PADDLE_ENFORCE_GT(groups, 0, "'groups' should be greater than zero.");
        });
129 130 131
    AddAttr<std::string>("data_layout",
                         "An optional string from: \"NHWC\", \"NCHW\". ")
        .SetDefault("NCHW");
D
Dun 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    AddComment(R"DOC(
Group Normalization

Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_
)DOC");
  }
};

class GroupNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
146 147
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of GroupNormOp should not be null.");
D
Dun 已提交
148 149 150 151 152 153 154
    PADDLE_ENFORCE(ctx->HasInput("Variance"),
                   "Input(Variance) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) of GroupNormOp should not be null.");

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
155
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y"));
D
Dun 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
Y
Yu Yang 已提交
183
    return framework::OpKernelType(t->type(), ctx.GetPlace());
D
Dun 已提交
184 185 186
  }
};

H
hong 已提交
187 188
template <typename T>
class GroupNormGradMaker : public framework::SingleGradOpMaker<T> {
189
 public:
H
hong 已提交
190
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
191

H
hong 已提交
192 193
  std::unique_ptr<T> Apply() const override {
    auto *op = new T();
194
    op->SetType("group_norm_grad");
H
hong 已提交
195 196 197 198 199
    op->SetInput("Scale", this->Input("Scale"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetInput("Y", this->Output("Y"));
    op->SetInput("Variance", this->Output("Variance"));
200

H
hong 已提交
201 202 203
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
204

H
hong 已提交
205
    op->SetAttrMap(this->Attrs());
206

H
hong 已提交
207
    return std::unique_ptr<T>(op);
208 209 210
  }
};

211 212 213 214
DECLARE_INPLACE_OP_INFERER(GroupNormInplaceInToOut, {"X", "Y"});
DECLARE_INPLACE_OP_INFERER(GroupNormGradInplaceInToOut,
                           {framework::GradVarName("Y"),
                            framework::GradVarName("X")});
D
Dun 已提交
215 216 217 218 219 220 221 222 223 224

class GroupNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return {{"X", /*->*/ "Y"}};
  }
};

D
Dun 已提交
225 226 227 228 229
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(group_norm, ops::GroupNormOp, ops::GroupNormOpMaker,
H
hong 已提交
230 231 232
                  ops::GroupNormOpInferVarType,
                  ops::GroupNormGradMaker<paddle::framework::OpDesc>,
                  ops::GroupNormGradMaker<paddle::imperative::OpBase>,
D
Dun 已提交
233 234 235
                  ops::GroupNormInplaceInToOut);
REGISTER_OPERATOR(group_norm_grad, ops::GroupNormGradOp,
                  ops::GroupNormGradInplaceInToOut);
D
Dun 已提交
236 237 238 239 240 241 242
REGISTER_OP_CPU_KERNEL(
    group_norm, ops::GroupNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, double>);