group_norm_op.cc 6.8 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/group_norm_op.h"
16
#include <string>
D
Dun 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class GroupNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"),
                   "Output(Y) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mean"),
                   "Output(Mean) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Variance"),
                   "Output(Variance) of GroupNormOp should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto channel_num = x_dim[1];
    auto batch_size = x_dim[0];
    auto groups = ctx->Attrs().Get<int>("groups");
    PADDLE_ENFORCE_LE(
        groups, channel_num,
        "'groups' must be less equal than the number of channels.");
    PADDLE_ENFORCE_GE(groups, 1, "'groups' must be greater equal than 1.");

    if (ctx->HasInput("Scale")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], channel_num);
    }
    if (ctx->HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], channel_num);
    }

    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    ctx->SetOutputDim("Mean", {batch_size, groups});
    ctx->SetOutputDim("Variance", {batch_size, groups});
    ctx->ShareLoD("X", "Y");
  }
};

class GroupNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C"
             "that is applied to the output.")
        .AsDispensable();
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of each group.").AsIntermediate();
    AddOutput("Variance", "Variance of each group.").AsIntermediate();

    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 1.0f,
                         "'epsilon' should be between 0.0 and 1.0.");
        });
    AddAttr<int>("groups", "The number of groups that divided from channels.")
        .AddCustomChecker([](const int &groups) {
          PADDLE_ENFORCE_GT(groups, 0, "'groups' should be greater than zero.");
        });

    AddComment(R"DOC(
Group Normalization

Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_
)DOC");
  }
};

class GroupNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
106 107
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of GroupNormOp should not be null.");
D
Dun 已提交
108 109 110 111 112 113 114 115 116
    PADDLE_ENFORCE(ctx->HasInput("Mean"),
                   "Input(Mean) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Variance"),
                   "Input(Variance) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) of GroupNormOp should not be null.");

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
117
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y"));
D
Dun 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
Y
Yu Yang 已提交
145
    return framework::OpKernelType(t->type(), ctx.GetPlace());
D
Dun 已提交
146 147 148
  }
};

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
class GroupNormGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
    op->SetType("group_norm_grad");
    op->SetInput("Scale", Input("Scale"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetInput("Y", Output("Y"));
    op->SetInput("Mean", Output("Mean"));
    op->SetInput("Variance", Output("Variance"));

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

D
Dun 已提交
173 174 175 176 177
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(group_norm, ops::GroupNormOp, ops::GroupNormOpMaker,
178
                  ops::GroupNormGradMaker);
D
Dun 已提交
179 180 181 182 183 184 185 186
REGISTER_OPERATOR(group_norm_grad, ops::GroupNormGradOp);
REGISTER_OP_CPU_KERNEL(
    group_norm, ops::GroupNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, double>);