engine.cc 10.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
    infer_networkv2_.reset(infer_builder_->createNetworkV2(
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
    infer_builder_config_.reset(infer_builder_->createBuilderConfig());
    infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
    optim_profile_.reset(infer_builder_->createOptimizationProfile());
#endif
  } else {
    infer_network_.reset(infer_builder_->createNetwork());
  }
Y
Yan Chunwei 已提交
47 48
}

49 50
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
51
  freshDeviceId();
52 53 54 55 56 57 58
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
59
  }
N
nhzlx 已提交
60 61 62
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
63
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
64
  freshDeviceId();
65
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
66 67
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
68 69 70
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
71 72 73
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
74
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
75
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
76 77 78 79 80 81
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
82 83
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
84 85
    }
  }
86
#else
87
  if (enable_fp16)
88
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
89 90
                 "is at least 5."
                 "So, use FP32 to run.";
91
#endif
Z
Zhaolong Xing 已提交
92 93 94
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
95
    infer_builder_->setInt8Mode(true);
96 97 98 99 100 101 102 103 104 105 106 107 108 109
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
110 111
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
112 113 114 115
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
116 117
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
118 119 120 121
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
122 123 124
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
125 126
        }
      }
127
      std::unordered_set<std::string> all_out_t_name;
128 129
      for (int i = 0; i < network()->getNbOutputs(); i++) {
        auto *temp = network()->getOutput(i);
130 131 132 133
        temp->setDynamicRange(-1, 1);
        all_out_t_name.insert(temp->getName());
      }

134 135
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
136 137 138 139 140 141 142 143 144
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
          if (std::find(all_out_t_name.begin(), all_out_t_name.end(),
                        temp_out->getName()) != all_out_t_name.end()) {
            layer->setPrecision(nvinfer1::DataType::kFLOAT);
            layer->setOutputType(j, nvinfer1::DataType::kFLOAT);
          }
        }
      }
145 146
#endif
    }
N
nhzlx 已提交
147
  }
Y
Yan Chunwei 已提交
148

149 150
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
151
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
152 153 154 155 156 157 158 159 160 161 162 163
    for (auto &input : min_input_shape_) {
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
          Vec2TRT_Dims(input.second, input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
          Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
          Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
    }
    infer_builder_config_->addOptimizationProfile(optim_profile_.get());
164 165 166 167 168 169 170 171 172 173
    if (WithFp16()) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      if (disable_trt_plugin_fp16()) {
        LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                     "disabled the fp16 mode of TRT Plugin,\n"
                  << "you can reopen it with "
                     "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                     "opt_shape, false /*disable_trt_plugin_fp16*/)'";
      }
    }
174 175 176 177 178 179
    infer_engine_.reset(infer_builder_->buildEngineWithConfig(
        *network(), *infer_builder_config_));
#endif
  } else {
    infer_engine_.reset(infer_builder_->buildCudaEngine(*network()));
  }
Y
Yan Chunwei 已提交
180 181 182
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");
}

183
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
184
                                                nvinfer1::DataType dtype,
185
                                                const nvinfer1::Dims &dims) {
186 187 188 189
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
190
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
191
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
192
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
193 194 195
  return input;
}

196 197 198
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
199
  SetITensor(name, output);
Y
Yan Chunwei 已提交
200 201
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
202
  PADDLE_ENFORCE(!output->isNetworkInput());
203
  network()->markOutput(*output);
204
  PADDLE_ENFORCE(output->isNetworkOutput());
N
nhzlx 已提交
205 206
}

207 208
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
209 210
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
211
  PADDLE_ENFORCE(!output->isNetworkInput());
212
  network()->markOutput(*output);
L
Luo Tao 已提交
213 214
}

215 216
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
217
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
218
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
219 220 221 222
                    name);
  itensor_map_[name] = tensor;
}

223
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
224
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
225 226 227
  return itensor_map_[name];
}

228 229 230 231
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

232 233 234 235
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
236 237
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
238 239
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
240 241
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
242 243 244 245 246 247 248 249 250 251 252
  PADDLE_ENFORCE_EQ(
      weight_map.count(name_with_suffix), 0,
      "During TRT Op converter: We set weight %s with the same name "
      "twice into the weight_map",
      name_with_suffix);
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
253 254 255

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
256
    // when the op is conv, scale's size should be w_dims[0]
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

275 276
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
277
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
278 279
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
280
  owned_plugin_.emplace_back(plugin);
281
  return network()->addPluginExt(inputs, num_inputs, *plugin);
282 283
}

N
nhzlx 已提交
284 285 286 287 288 289 290
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
291 292 293
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle