fleet_base.py 41.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from paddle.fluid.framework import dygraph_only
21
from paddle.fluid import compiler
22
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
23
from .strategy_compiler import StrategyCompiler
24
from .distributed_strategy import DistributedStrategy
25 26
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29

30

31 32 33 34 35 36 37 38 39 40 41 42
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


59
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
60
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
61 62


63 64 65
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
66
    Please reference the https://github.com/PaddlePaddle/FleetX for details
67 68 69 70 71


    Returns:
        Fleet: A Fleet instance

72
    Example for collective training:
1
123malin 已提交
73

74 75
        .. code-block:: python

1
123malin 已提交
76 77
            import paddle
            paddle.enable_static()
78
            import paddle.distributed.fleet as fleet
79 80 81

            fleet.init(is_collective=True)

82 83 84
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
85 86 87 88 89 90 91 92

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
93 94
            import paddle
            paddle.enable_static()
95 96
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
97 98
            fleet.init(strategy=strategy)

99
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
100
            optimizer = fleet.distributed_optimizer(optimizer)
101

102 103
            if fleet.is_first_worker():
                print("this is first worker")
104

105 106
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
107

108 109 110
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
111

112 113
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
114

115 116 117
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
118 119


120 121 122
    """

    def __init__(self):
123
        self._role_maker = None
124
        self.strategy_compiler = None
125
        self._is_collective = False
126
        self._runtime_handle = None
D
Dong Daxiang 已提交
127 128
        self._util = None
        self._context = {}
129

130
    def init(self, role_maker=None, is_collective=False, strategy=None):
131 132 133
        """
        Initialize role_maker in Fleet.

134 135 136 137 138 139 140 141 142 143 144
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
145 146 147 148
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
171
                role = fleet.PaddleCloudRoleMaker()
172
                fleet.init(role)
173

174 175 176 177 178 179 180 181
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(strategy=strategy)

182
        """
183 184 185
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
186 187

        if role_maker is None:
188 189 190 191 192 193
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
194 195
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
196
        else:
197 198
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
199
                self._is_collective = role_maker._is_collective
200 201 202 203
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
204
        self._role_maker._generate_role()
205

206 207 208
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

209
        self.strategy_compiler = StrategyCompiler()
210 211 212 213 214 215 216 217 218

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

219
        if paddle.fluid.framework.in_dygraph_mode():
220 221
            if self.worker_num() == 1:
                return
222 223 224 225
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
226 227 228 229 230 231 232 233 234
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
235
                paddle.distributed.init_parallel_env()
236 237 238 239 240 241 242 243

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
244

245 246 247 248 249 250 251 252
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

253
        """
254
        return self._role_maker._is_first_worker()
255 256 257 258 259 260 261

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
262 263 264 265

        Examples:

            .. code-block:: python
1
123malin 已提交
266

267 268 269 270
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

271
        """
272
        return self._role_maker._worker_index()
273 274 275 276 277 278 279

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
280

281
        Examples:
1
123malin 已提交
282

283 284 285 286 287 288
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

289
        """
290
        return self._role_maker._worker_num()
291 292 293 294 295 296 297 298

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
299 300

        Examples:
1
123malin 已提交
301

302 303 304 305 306 307
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

308
        """
309
        return self._role_maker._is_worker()
310 311 312

    def worker_endpoints(self, to_string=False):
        """
313
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
314 315 316

        Returns:
            list/string: server endpoints
317 318

        Examples:
1
123malin 已提交
319

320 321 322 323 324 325
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

326 327
        """
        if to_string:
328
            return ",".join(self._role_maker._get_trainer_endpoints())
329
        else:
330
            return self._role_maker._get_trainer_endpoints()
331 332 333 334 335 336 337

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
338 339

        Examples:
1
123malin 已提交
340

341
            .. code-block:: python
1
123malin 已提交
342 343 344 345

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
346
        """
347
        return len(self._role_maker._get_pserver_endpoints())
348 349 350 351 352 353 354

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
355 356

        Examples:
1
123malin 已提交
357

358 359 360 361 362 363
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

364
        """
365
        return self._role_maker._server_index()
366 367 368 369 370 371 372

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
373 374

        Examples:
1
123malin 已提交
375

376 377 378 379 380 381
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

382
        """
383

384
        if to_string:
385
            return ",".join(self._role_maker._get_pserver_endpoints())
386
        else:
387
            return self._role_maker._get_pserver_endpoints()
388 389 390 391 392 393 394 395

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
396 397 398 399

        Examples:

            .. code-block:: python
1
123malin 已提交
400

401 402 403 404
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

405
        """
406
        return self._role_maker._is_server(
407
        ) or self._role_maker._is_heter_worker()
408 409 410

    def barrier_worker(self):
        """
411 412 413 414
        barrier all workers

        Returns:
            None
415
        """
416
        self._role_maker._barrier("worker")
417

418
    @is_non_distributed_check
419
    @inited_runtime_handler
420 421
    def init_worker(self):
        """
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

440 441 442
        """
        self._runtime_handle._init_worker()

443
    @is_non_distributed_check
444
    @inited_runtime_handler
445
    def init_server(self, *args, **kwargs):
446
        """
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

466
        """
467
        self._runtime_handle._init_server(*args, **kwargs)
468

469
    @is_non_distributed_check
470
    @inited_runtime_handler
471 472
    def run_server(self):
        """
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

491 492 493
        """
        self._runtime_handle._run_server()

494
    @is_non_distributed_check
495
    @inited_runtime_handler
496 497
    def stop_worker(self):
        """
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

515 516 517
        """
        self._runtime_handle._stop_worker()

518 519 520 521 522 523
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
524 525
                             export_for_deployment=True,
                             mode=0):
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

546 547
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
548
            export_for_deployment, mode)
549

550
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
551 552
        """

1
123malin 已提交
553
        saves all persistable tensors from :code:`main_program` to
554 555
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
556 557
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
558 559 560
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
561
            executor(Executor): The executor to run for saving persistable tensors.
562 563 564 565 566
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
567
            main_program(Program, optional): The program whose persistbale tensors will
568 569 570 571 572 573 574 575 576 577
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
578 579
                import paddle
                paddle.enable_static()
580 581 582 583 584 585 586
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
587 588
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
589 590 591

        """

592 593
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
594

595 596 597
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

598
    def distributed_optimizer(self, optimizer, strategy=None):
599
        """
600 601 602 603 604 605 606
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
607 608 609 610 611
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
612

613
        Returns:
614
            Fleet: instance of fleet.
615 616

        Examples:
617

618
            .. code-block:: python
619

1
123malin 已提交
620
                import paddle
621
                import paddle.distributed.fleet as fleet
1
123malin 已提交
622
                fleet.init(is_collective=True)
623 624 625 626
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

627 628
        """
        self.user_defined_optimizer = optimizer
629

630 631
        if strategy is not None:
            warnings.warn(
632 633 634 635
                "It is recommended to use DistributedStrategy "
                "in fleet.init(). The strategy here is only for compatibility. "
                "If the strategy in fleet.distributed_optimizer() is "
                "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
636 637
                "which will take effect in distributed training.")
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
638 639

        self._context = {}
640 641
        return self

642
    @dygraph_only
643
    def distributed_model(self, model):
644
        """
645 646 647 648 649 650 651
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
652 653

        Examples:
654

655 656
            .. code-block:: python

657 658 659 660 661 662 663 664 665
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
666

667 668
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
669

1
123malin 已提交
670
                # 1. initialize fleet environment
671 672
                fleet.init(is_collective=True)

1
123malin 已提交
673
                # 2. create layer & optimizer
674 675 676 677 678
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
679
                # 3. get data_parallel model using fleet
680 681 682
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
683
                # 4. run layer
684 685 686 687 688 689 690 691 692 693 694 695
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

696

697 698
        """
        assert model is not None
699 700
        self.model = paddle.DataParallel(
            model,
701 702 703
            comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=self._user_defined_strategy.
            last_comm_group_size_MB)
704 705 706 707 708 709
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
710
        (Only work in dygraph mode)
711 712 713 714 715 716 717

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

718 719 720 721 722
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
723

724
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
725
                a = paddle.to_tensor(value)
726

727 728
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
729

730 731 732
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
733 734 735 736 737 738 739 740
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
741
        (Only work in dygraph mode)
742 743 744 745

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

746 747
        Returns:
            None
748 749 750 751

        Examples:
            .. code-block:: python

752 753 754
                import numpy as np
                import paddle
                from paddle.distributed import fleet
755

756 757 758
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
759
                a = paddle.to_tensor(value)
760

761 762
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
763

764 765 766
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
767 768 769
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
770 771 772 773 774 775 776 777
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
778
        (Only work in dygraph mode)
779

780 781 782
        Args:
            value (float|Tensor): the value of learning rate

783 784
        Returns: 
            None 
785 786 787 788

        Examples:
            .. code-block:: python

789 790 791
                import numpy as np
                import paddle
                from paddle.distributed import fleet
792

793
                fleet.init(is_collective=True)
794

795
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
796
                a = paddle.to_tensor(value)
797

798 799
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
800

801 802 803 804 805 806 807 808 809 810 811 812 813 814
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
815 816 817 818 819 820 821 822
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
823
        (Only work in dygraph mode)
824 825 826 827 828

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
829

830 831
            .. code-block:: python

832 833 834 835 836
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
837

838
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
839
                a = paddle.to_tensor(value)
840

841 842
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
843

844 845
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
846

847 848
                lr = adam.get_lr()
                print(lr) # 0.01
849 850 851 852 853 854 855 856
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
857
        (Only work in dygraph mode)
858

859 860
        Returns:
            None
861 862

        Examples:
1
123malin 已提交
863

864 865
            .. code-block:: python

866 867 868
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
869

870 871 872 873 874
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
875

876 877
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
878

1
123malin 已提交
879
                # 1. initialize fleet environment
880 881
                fleet.init(is_collective=True)

1
123malin 已提交
882
                # 2. create layer & optimizer
883 884 885 886 887
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
888
                # 3. get data_parallel model using fleet
889 890 891
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
892
                # 4. run layer
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
913 914
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
915

916 917
        Returns: 
            None
918 919

        Examples:
1
123malin 已提交
920

921 922
            .. code-block:: python

923 924 925
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
926

927 928 929 930 931
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
932

933 934
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
935

1
123malin 已提交
936
                # 1. initialize fleet environment
937 938
                fleet.init(is_collective=True)

1
123malin 已提交
939
                # 2. create layer & optimizer
940 941 942 943 944
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
945
                # 3. get data_parallel model using fleet
946 947 948
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
949
                # 4. run layer
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1026

1027
        # imitate target optimizer retrieval
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."

        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
1042

D
Dong Daxiang 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1070 1071 1072 1073 1074 1075 1076 1077 1078
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1079
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1080 1081 1082
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1083
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1084 1085
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1086
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1087 1088 1089 1090
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1091
            by minimize and a list of (param, grad) tensor pairs, param is
1092
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1093 1094
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1095 1096 1097
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1098

1099
            .. code-block:: python
1100

1101
                import paddle
1
123malin 已提交
1102
                paddle.enable_static()
1103
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1115

1
123malin 已提交
1116
                fleet.init(is_collective=True)
1117 1118 1119 1120
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1121

1122
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1123 1124

        """
D
Dong Daxiang 已提交
1125 1126 1127
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1128 1129 1130
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1131
            self._context = context
1132 1133
            return target_opt.minimize(loss)

1134 1135
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1136 1137
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1138 1139
        if startup_program == None:
            self.origin_startup_program = \
1140 1141
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1142 1143 1144
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1145

1146 1147
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1148 1149 1150 1151 1152

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1153

D
Dong Daxiang 已提交
1154 1155 1156
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1157 1158 1159 1160 1161 1162

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1163
        if copy_user_defined_strategy._is_strict_auto():
1164 1165
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1166
                opt._enable_strategy(copy_user_defined_strategy, context)
1167

1168 1169
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1170
        can_not_apply_optimizer_list = []
1171 1172 1173 1174
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1175
                                copy_user_defined_strategy)
1176 1177
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1178
            elif opt._can_apply() and opt._is_graph_out():
1179
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1180 1181
            else:
                can_not_apply_optimizer_list.append(opt)
1182
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1183
        meta_optimizer, graph_optimizer = \
1184 1185
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1186
                copy_user_defined_strategy, valid_optimizer_list,
1187
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1188

D
Dong Daxiang 已提交
1189
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1190 1191 1192
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1193

1194 1195 1196 1197 1198 1199
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1200
        self._context = context
1201

D
Dong Daxiang 已提交
1202
        self.valid_strategy = valid_strategy
1203
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1204

1205 1206
        optimize_ops = []
        params_grads = []
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1217
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1218

1219 1220
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1221
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1222

1223
            default_program = paddle.static.default_main_program()
1224 1225 1226 1227

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1228 1229
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1230
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1231

1232 1233
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1234

1235
        if graph_optimizer:
D
Dong Daxiang 已提交
1236
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1237
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1238 1239 1240 1241
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1242 1243 1244
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1245
        if self._runtime_handle is None:
1246
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1247

1248 1249
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1250 1251

        return optimize_ops, params_grads