fleet_base.py 36.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
from paddle.fluid.framework import dygraph_only
20
from paddle.fluid import compiler
21
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
22
from .strategy_compiler import StrategyCompiler
23
from .distributed_strategy import DistributedStrategy
24 25
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
26
from paddle.fluid.wrapped_decorator import wrap_decorator
27
from paddle.fluid.dygraph import parallel_helper
28

29

30 31 32 33 34 35 36 37 38 39 40 41
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


58
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
59
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
60 61


62 63 64
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
65
    Please reference the https://github.com/PaddlePaddle/FleetX for details
66 67 68 69 70


    Returns:
        Fleet: A Fleet instance

71
    Example for collective training:
1
123malin 已提交
72

73 74
        .. code-block:: python

1
123malin 已提交
75 76
            import paddle
            paddle.enable_static()
77
            import paddle.distributed.fleet as fleet
78 79 80

            fleet.init(is_collective=True)

81 82 83
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
84 85 86 87 88 89 90 91

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
92 93
            import paddle
            paddle.enable_static()
94 95
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
96 97
            fleet.init(strategy=strategy)

98
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
99
            optimizer = fleet.distributed_optimizer(optimizer)
100

101 102
            if fleet.is_first_worker():
                print("this is first worker")
103

104 105
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
106

107 108 109
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
110

111 112
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
113

114 115 116
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
117 118


119 120 121
    """

    def __init__(self):
122
        self._role_maker = None
123
        self.strategy_compiler = None
124
        self._is_collective = False
125
        self._runtime_handle = None
D
Dong Daxiang 已提交
126 127
        self._util = None
        self._context = {}
128

129
    def init(self, role_maker=None, is_collective=False, strategy=None):
130 131 132
        """
        Initialize role_maker in Fleet.

133 134 135 136 137 138 139 140 141 142 143
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
144 145 146 147
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
170
                role = fleet.PaddleCloudRoleMaker()
171
                fleet.init(role)
172

173 174 175 176 177 178 179 180
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(strategy=strategy)

181
        """
182 183 184
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
185 186

        if role_maker is None:
187 188 189 190 191 192
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
193 194
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
195
        else:
196 197 198 199 200 201
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
202
        self._role_maker._generate_role()
203

204 205 206
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

207
        self.strategy_compiler = StrategyCompiler()
208 209 210 211 212 213 214 215 216

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

217
        if paddle.fluid.framework.in_dygraph_mode():
218 219
            if self.worker_num() == 1:
                return
220 221 222 223 224
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
                paddle.distributed.init_parallel_env()
225 226 227 228 229 230 231 232

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
233

234 235 236 237 238 239 240 241
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

242
        """
243
        return self._role_maker._is_first_worker()
244 245 246 247 248 249 250

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
251 252 253 254

        Examples:

            .. code-block:: python
1
123malin 已提交
255

256 257 258 259
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

260
        """
261
        return self._role_maker._worker_index()
262 263 264 265 266 267 268

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
269

270
        Examples:
1
123malin 已提交
271

272 273 274 275 276 277
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

278
        """
279
        return self._role_maker._worker_num()
280 281 282 283 284 285 286 287

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
288 289

        Examples:
1
123malin 已提交
290

291 292 293 294 295 296
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

297
        """
298
        return self._role_maker._is_worker()
299 300 301

    def worker_endpoints(self, to_string=False):
        """
302
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
303 304 305

        Returns:
            list/string: server endpoints
306 307

        Examples:
1
123malin 已提交
308

309 310 311 312 313 314
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

315 316
        """
        if to_string:
317
            return ",".join(self._role_maker._get_trainer_endpoints())
318
        else:
319
            return self._role_maker._get_trainer_endpoints()
320 321 322 323 324 325 326

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
327 328

        Examples:
1
123malin 已提交
329

330
            .. code-block:: python
1
123malin 已提交
331 332 333 334

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
335
        """
336
        return len(self._role_maker._get_pserver_endpoints())
337 338 339 340 341 342 343

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
344 345

        Examples:
1
123malin 已提交
346

347 348 349 350 351 352
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

353
        """
354
        return self._role_maker._server_index()
355 356 357 358 359 360 361

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
362 363

        Examples:
1
123malin 已提交
364

365 366 367 368 369 370
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

371
        """
372

373
        if to_string:
374
            return ",".join(self._role_maker._get_pserver_endpoints())
375
        else:
376
            return self._role_maker._get_pserver_endpoints()
377 378 379 380 381 382 383 384

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
385 386 387 388

        Examples:

            .. code-block:: python
1
123malin 已提交
389

390 391 392 393
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

394
        """
395
        return self._role_maker._is_server(
396
        ) or self._role_maker._is_heter_worker()
397 398 399

    def barrier_worker(self):
        """
400 401 402 403
        barrier all workers

        Returns:
            None
404
        """
405
        self._role_maker._barrier("worker")
406

407
    @is_non_distributed_check
408
    @inited_runtime_handler
409 410
    def init_worker(self):
        """
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

429 430 431
        """
        self._runtime_handle._init_worker()

432
    @is_non_distributed_check
433
    @inited_runtime_handler
434
    def init_server(self, *args, **kwargs):
435
        """
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

455
        """
456
        self._runtime_handle._init_server(*args, **kwargs)
457

458
    @is_non_distributed_check
459
    @inited_runtime_handler
460 461
    def run_server(self):
        """
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

480 481 482
        """
        self._runtime_handle._run_server()

483
    @is_non_distributed_check
484
    @inited_runtime_handler
485 486
    def stop_worker(self):
        """
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

504 505 506
        """
        self._runtime_handle._stop_worker()

507 508 509 510 511 512 513
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

534 535 536 537
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
            export_for_deployment)

538
    def save_persistables(self, executor, dirname, main_program=None, mode=1):
539 540
        """

1
123malin 已提交
541
        saves all persistable tensors from :code:`main_program` to
542 543
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
544 545
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
546 547 548
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
549
            executor(Executor): The executor to run for saving persistable tensors.
550 551 552 553 554
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
555
            main_program(Program, optional): The program whose persistbale tensors will
556 557 558 559 560 561 562 563 564 565
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
566 567
                import paddle
                paddle.enable_static()
568 569 570 571 572 573 574
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
575 576
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
577 578 579

        """

580 581
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
582

583
    def distributed_optimizer(self, optimizer, strategy=None):
584
        """
585 586 587 588 589 590 591
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
592 593 594 595 596
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
597

598
        Returns:
599
            Fleet: instance of fleet.
600 601

        Examples:
602

603
            .. code-block:: python
604

1
123malin 已提交
605
                import paddle
606
                import paddle.distributed.fleet as fleet
1
123malin 已提交
607
                fleet.init(is_collective=True)
608 609 610 611
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

612 613
        """
        self.user_defined_optimizer = optimizer
614

615 616
        if strategy is not None:
            warnings.warn(
617 618 619 620
                "It is recommended to use DistributedStrategy "
                "in fleet.init(). The strategy here is only for compatibility. "
                "If the strategy in fleet.distributed_optimizer() is "
                "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
621 622
                "which will take effect in distributed training.")
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
623 624

        self._context = {}
625 626
        return self

627
    @dygraph_only
628
    def distributed_model(self, model):
629
        """
630 631 632 633 634 635 636
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
637 638

        Examples:
639

640 641
            .. code-block:: python

642 643 644 645 646 647 648 649 650
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
651

652 653
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
654

1
123malin 已提交
655
                # 1. initialize fleet environment
656 657
                fleet.init(is_collective=True)

1
123malin 已提交
658
                # 2. create layer & optimizer
659 660 661 662 663
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
664
                # 3. get data_parallel model using fleet
665 666 667
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
668
                # 4. run layer
669 670 671 672 673 674 675 676 677 678 679 680
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

681

682 683
        """
        assert model is not None
684 685
        self.model = paddle.DataParallel(
            model,
686 687 688
            comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=self._user_defined_strategy.
            last_comm_group_size_MB)
689 690 691 692 693 694
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
695
        (Only work in dygraph mode)
696 697 698 699 700 701 702

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

703 704 705 706 707
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
708

709
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
710
                a = paddle.to_tensor(value)
711

712 713
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
714

715 716 717
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
718 719 720 721 722 723 724 725
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
726
        (Only work in dygraph mode)
727 728 729 730

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

731 732
        Returns:
            None
733 734 735 736

        Examples:
            .. code-block:: python

737 738 739
                import numpy as np
                import paddle
                from paddle.distributed import fleet
740

741 742 743
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
744
                a = paddle.to_tensor(value)
745

746 747
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
748

749 750 751
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
752 753 754
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
755 756 757 758 759 760 761 762
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
763
        (Only work in dygraph mode)
764

765 766 767
        Args:
            value (float|Tensor): the value of learning rate

768 769
        Returns: 
            None 
770 771 772 773

        Examples:
            .. code-block:: python

774 775 776
                import numpy as np
                import paddle
                from paddle.distributed import fleet
777

778
                fleet.init(is_collective=True)
779

780
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
781
                a = paddle.to_tensor(value)
782

783 784
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
800 801 802 803 804 805 806 807
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
808
        (Only work in dygraph mode)
809 810 811 812 813

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
814

815 816
            .. code-block:: python

817 818 819 820 821
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
822

823
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
824
                a = paddle.to_tensor(value)
825

826 827
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
828

829 830
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
831

832 833
                lr = adam.get_lr()
                print(lr) # 0.01
834 835 836 837 838 839 840 841
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
842
        (Only work in dygraph mode)
843

844 845
        Returns:
            None
846 847

        Examples:
1
123malin 已提交
848

849 850
            .. code-block:: python

851 852 853
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
854

855 856 857 858 859
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
860

861 862
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
863

1
123malin 已提交
864
                # 1. initialize fleet environment
865 866
                fleet.init(is_collective=True)

1
123malin 已提交
867
                # 2. create layer & optimizer
868 869 870 871 872
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
873
                # 3. get data_parallel model using fleet
874 875 876
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
877
                # 4. run layer
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
898 899
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
900

901 902
        Returns: 
            None
903 904

        Examples:
1
123malin 已提交
905

906 907
            .. code-block:: python

908 909 910
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
911

912 913 914 915 916
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
917

918 919
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
920

1
123malin 已提交
921
                # 1. initialize fleet environment
922 923
                fleet.init(is_collective=True)

1
123malin 已提交
924
                # 2. create layer & optimizer
925 926 927 928 929
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
930
                # 3. get data_parallel model using fleet
931 932 933
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
934
                # 4. run layer
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

D
Dong Daxiang 已提交
951 952 953 954 955 956 957 958 959
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

978 979 980 981 982 983 984 985 986
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
987
            loss (Tensor): A ``Tensor`` containing the value to minimize.
988 989 990
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
991
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
992 993
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
994
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
995 996 997 998
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
999
            by minimize and a list of (param, grad) tensor pairs, param is
1000
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1001 1002
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1003 1004 1005
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1006

1007
            .. code-block:: python
1008

1009
                import paddle
1
123malin 已提交
1010
                paddle.enable_static()
1011
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1023

1
123malin 已提交
1024
                fleet.init(is_collective=True)
1025 1026 1027 1028
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1029

1030
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1031 1032

        """
D
Dong Daxiang 已提交
1033 1034 1035
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1036 1037 1038
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1039
            self._context = context
1040 1041
            return target_opt.minimize(loss)

1042 1043
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1044 1045
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1046 1047
        if startup_program == None:
            self.origin_startup_program = \
1048 1049
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1050 1051 1052
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1053

1054 1055
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1056 1057 1058 1059 1060

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1061

D
Dong Daxiang 已提交
1062 1063 1064
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1065 1066 1067 1068 1069 1070

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1071
        if copy_user_defined_strategy._is_strict_auto():
1072 1073
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1074
                opt._enable_strategy(copy_user_defined_strategy, context)
1075

1076 1077
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1078
        can_not_apply_optimizer_list = []
1079 1080 1081 1082
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1083
                                copy_user_defined_strategy)
1084 1085
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1086
            elif opt._can_apply() and opt._is_graph_out():
1087
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1088 1089
            else:
                can_not_apply_optimizer_list.append(opt)
1090
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1091
        meta_optimizer, graph_optimizer = \
1092 1093
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1094
                copy_user_defined_strategy, valid_optimizer_list,
1095
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1096

D
Dong Daxiang 已提交
1097
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1098 1099 1100
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1101

1102 1103 1104 1105 1106 1107
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1108
        self._context = context
1109

D
Dong Daxiang 已提交
1110
        self.valid_strategy = valid_strategy
1111
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1112

1113 1114
        optimize_ops = []
        params_grads = []
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1125
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1126

1127 1128
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1129
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1130

1131
            default_program = paddle.static.default_main_program()
1132 1133 1134 1135

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1136 1137
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1138
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1139

1140 1141
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1142

1143
        if graph_optimizer:
D
Dong Daxiang 已提交
1144
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1145
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1146 1147 1148 1149
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1150 1151 1152
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1153
        if self._runtime_handle is None:
1154
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1155

1156 1157
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1158 1159

        return optimize_ops, params_grads