fleet_base.py 36.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
from paddle.fluid.framework import dygraph_only
20
from paddle.fluid import compiler
21
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
22
from .strategy_compiler import StrategyCompiler
23
from .distributed_strategy import DistributedStrategy
24 25
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
26
from paddle.fluid.wrapped_decorator import wrap_decorator
27
from paddle.fluid.dygraph import parallel_helper
28

29

30 31 32 33 34 35 36 37 38 39 40 41
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


58
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
59
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
60 61


62 63 64
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
65
    Please reference the https://github.com/PaddlePaddle/FleetX for details
66 67 68 69 70


    Returns:
        Fleet: A Fleet instance

71
    Example for collective training:
1
123malin 已提交
72

73 74
        .. code-block:: python

1
123malin 已提交
75 76
            import paddle
            paddle.enable_static()
77
            import paddle.distributed.fleet as fleet
78 79 80

            fleet.init(is_collective=True)

81 82 83
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
84 85 86 87 88 89 90 91

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
92 93
            import paddle
            paddle.enable_static()
94 95
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
96 97
            fleet.init(strategy=strategy)

98
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
99
            optimizer = fleet.distributed_optimizer(optimizer)
100

101 102
            if fleet.is_first_worker():
                print("this is first worker")
103

104 105
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
106

107 108 109
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
110

111 112
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
113

114 115 116
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
117 118


119 120 121
    """

    def __init__(self):
122
        self._role_maker = None
123
        self.strategy_compiler = None
124
        self._is_collective = False
125
        self._runtime_handle = None
D
Dong Daxiang 已提交
126 127
        self._util = None
        self._context = {}
128

129
    def init(self, role_maker=None, is_collective=False, strategy=None):
130 131 132
        """
        Initialize role_maker in Fleet.

133 134 135 136 137 138 139 140 141 142 143
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
144 145 146 147
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
170
                role = fleet.PaddleCloudRoleMaker()
171
                fleet.init(role)
172

173 174 175 176 177 178 179 180
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(strategy=strategy)

181
        """
182 183

        if role_maker is None:
184 185 186 187 188 189
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
190 191
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
192
        else:
193 194 195 196 197 198
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
199
        self._role_maker._generate_role()
200

201 202 203
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

204
        self.strategy_compiler = StrategyCompiler()
205 206 207 208 209 210 211 212 213

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

214
        if paddle.fluid.framework.in_dygraph_mode():
215 216
            if self.worker_num() == 1:
                return
217 218 219 220 221
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
                paddle.distributed.init_parallel_env()
222

223 224 225 226
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)

227 228 229 230 231 232 233
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
234

235 236 237 238 239 240 241 242
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

243
        """
244
        return self._role_maker._is_first_worker()
245 246 247 248 249 250 251

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
252 253 254 255

        Examples:

            .. code-block:: python
1
123malin 已提交
256

257 258 259 260
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

261
        """
262
        return self._role_maker._worker_index()
263 264 265 266 267 268 269

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
270

271
        Examples:
1
123malin 已提交
272

273 274 275 276 277 278
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

279
        """
280
        return self._role_maker._worker_num()
281 282 283 284 285 286 287 288

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
289 290

        Examples:
1
123malin 已提交
291

292 293 294 295 296 297
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

298
        """
299
        return self._role_maker._is_worker()
300 301 302

    def worker_endpoints(self, to_string=False):
        """
303
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
304 305 306

        Returns:
            list/string: server endpoints
307 308

        Examples:
1
123malin 已提交
309

310 311 312 313 314 315
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

316 317
        """
        if to_string:
318
            return ",".join(self._role_maker._get_trainer_endpoints())
319
        else:
320
            return self._role_maker._get_trainer_endpoints()
321 322 323 324 325 326 327

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
328 329

        Examples:
1
123malin 已提交
330

331
            .. code-block:: python
1
123malin 已提交
332 333 334 335

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
336
        """
337
        return len(self._role_maker._get_pserver_endpoints())
338 339 340 341 342 343 344

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
345 346

        Examples:
1
123malin 已提交
347

348 349 350 351 352 353
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

354
        """
355
        return self._role_maker._server_index()
356 357 358 359 360 361 362

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
363 364

        Examples:
1
123malin 已提交
365

366 367 368 369 370 371
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

372
        """
373

374
        if to_string:
375
            return ",".join(self._role_maker._get_pserver_endpoints())
376
        else:
377
            return self._role_maker._get_pserver_endpoints()
378 379 380 381 382 383 384 385

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
386 387 388 389

        Examples:

            .. code-block:: python
1
123malin 已提交
390

391 392 393 394
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

395
        """
396
        return self._role_maker._is_server(
397
        ) or self._role_maker._is_heter_worker()
398 399 400

    def barrier_worker(self):
        """
401 402 403 404
        barrier all workers

        Returns:
            None
405
        """
406
        self._role_maker._barrier("worker")
407

408
    @is_non_distributed_check
409
    @inited_runtime_handler
410 411
    def init_worker(self):
        """
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

430 431 432
        """
        self._runtime_handle._init_worker()

433
    @is_non_distributed_check
434
    @inited_runtime_handler
435
    def init_server(self, *args, **kwargs):
436
        """
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

456
        """
457
        self._runtime_handle._init_server(*args, **kwargs)
458

459
    @is_non_distributed_check
460
    @inited_runtime_handler
461 462
    def run_server(self):
        """
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

481 482 483
        """
        self._runtime_handle._run_server()

484
    @is_non_distributed_check
485
    @inited_runtime_handler
486 487
    def stop_worker(self):
        """
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

505 506 507
        """
        self._runtime_handle._stop_worker()

508 509 510 511 512 513 514
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

535 536 537 538
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
            export_for_deployment)

539
    def save_persistables(self, executor, dirname, main_program=None, mode=1):
540 541
        """

1
123malin 已提交
542
        saves all persistable tensors from :code:`main_program` to
543 544
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
545 546
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
547 548 549
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
550
            executor(Executor): The executor to run for saving persistable tensors.
551 552 553 554 555
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
556
            main_program(Program, optional): The program whose persistbale tensors will
557 558 559 560 561 562 563 564 565 566
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
567 568
                import paddle
                paddle.enable_static()
569 570 571 572 573 574 575
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
576 577
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
578 579 580

        """

581 582
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
583

584
    def distributed_optimizer(self, optimizer, strategy=None):
585
        """
586 587 588 589 590 591 592
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
593 594 595 596 597
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
598

599
        Returns:
600
            Fleet: instance of fleet.
601 602

        Examples:
603

604
            .. code-block:: python
605

1
123malin 已提交
606
                import paddle
607
                import paddle.distributed.fleet as fleet
1
123malin 已提交
608
                fleet.init(is_collective=True)
609 610 611 612
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

613 614
        """
        self.user_defined_optimizer = optimizer
615

616 617 618 619 620 621 622 623
        if strategy is not None:
            warnings.warn(
                "It is recommended to pass in DistributedStrategy"
                "in fleet.init. The strategy here is for compatibility."
                "If the `strategy` in fleet.distributed_optimizer() is"
                "not None, then it will overwrite the DistributedStrategy in fleet.init(),"
                "which will take effect in distributed training.")
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
624 625

        self._context = {}
626 627
        return self

628
    @dygraph_only
629
    def distributed_model(self, model):
630
        """
631 632 633 634 635 636 637
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
638 639

        Examples:
640

641 642
            .. code-block:: python

643 644 645 646 647 648 649 650 651
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
652

653 654
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
655

1
123malin 已提交
656
                # 1. initialize fleet environment
657 658
                fleet.init(is_collective=True)

1
123malin 已提交
659
                # 2. create layer & optimizer
660 661 662 663 664
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
665
                # 3. get data_parallel model using fleet
666 667 668
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
669
                # 4. run layer
670 671 672 673 674 675 676 677 678 679 680 681
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

682

683 684
        """
        assert model is not None
685 686
        self.model = paddle.DataParallel(
            model,
687 688 689
            comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=self._user_defined_strategy.
            last_comm_group_size_MB)
690 691 692 693 694 695
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
696
        (Only work in dygraph mode)
697 698 699 700 701 702 703

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

704 705 706 707 708
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
709

710
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
711
                a = paddle.to_tensor(value)
712

713 714
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
715

716 717 718
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
719 720 721 722 723 724 725 726
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
727
        (Only work in dygraph mode)
728 729 730 731

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

732 733
        Returns:
            None
734 735 736 737

        Examples:
            .. code-block:: python

738 739 740
                import numpy as np
                import paddle
                from paddle.distributed import fleet
741

742 743 744
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
745
                a = paddle.to_tensor(value)
746

747 748
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
749

750 751 752
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
753 754 755
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
756 757 758 759 760 761 762 763
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
764
        (Only work in dygraph mode)
765

766 767 768
        Args:
            value (float|Tensor): the value of learning rate

769 770
        Returns: 
            None 
771 772 773 774

        Examples:
            .. code-block:: python

775 776 777
                import numpy as np
                import paddle
                from paddle.distributed import fleet
778

779
                fleet.init(is_collective=True)
780

781
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
782
                a = paddle.to_tensor(value)
783

784 785
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
801 802 803 804 805 806 807 808
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
809
        (Only work in dygraph mode)
810 811 812 813 814

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
815

816 817
            .. code-block:: python

818 819 820 821 822
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
823

824
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
825
                a = paddle.to_tensor(value)
826

827 828
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
829

830 831
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
832

833 834
                lr = adam.get_lr()
                print(lr) # 0.01
835 836 837 838 839 840 841 842
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
843
        (Only work in dygraph mode)
844

845 846
        Returns:
            None
847 848

        Examples:
1
123malin 已提交
849

850 851
            .. code-block:: python

852 853 854
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
855

856 857 858 859 860
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
861

862 863
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
864

1
123malin 已提交
865
                # 1. initialize fleet environment
866 867
                fleet.init(is_collective=True)

1
123malin 已提交
868
                # 2. create layer & optimizer
869 870 871 872 873
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
874
                # 3. get data_parallel model using fleet
875 876 877
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
878
                # 4. run layer
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
899 900
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
901

902 903
        Returns: 
            None
904 905

        Examples:
1
123malin 已提交
906

907 908
            .. code-block:: python

909 910 911
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
912

913 914 915 916 917
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
918

919 920
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
921

1
123malin 已提交
922
                # 1. initialize fleet environment
923 924
                fleet.init(is_collective=True)

1
123malin 已提交
925
                # 2. create layer & optimizer
926 927 928 929 930
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
931
                # 3. get data_parallel model using fleet
932 933 934
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
935
                # 4. run layer
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

D
Dong Daxiang 已提交
952 953 954 955 956 957 958 959 960
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

979 980 981 982 983 984 985 986 987
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
988
            loss (Tensor): A ``Tensor`` containing the value to minimize.
989 990 991
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
992
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
993 994
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
995
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
996 997 998 999
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1000
            by minimize and a list of (param, grad) tensor pairs, param is
1001
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1002 1003
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1004 1005 1006
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1007

1008
            .. code-block:: python
1009

1010
                import paddle
1
123malin 已提交
1011
                paddle.enable_static()
1012
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1024

1
123malin 已提交
1025
                fleet.init(is_collective=True)
1026 1027 1028 1029
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1030

1031
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1032 1033

        """
D
Dong Daxiang 已提交
1034 1035 1036
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1037 1038 1039
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1040
            self._context = context
1041 1042
            return target_opt.minimize(loss)

1043 1044
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1045 1046
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1047 1048
        if startup_program == None:
            self.origin_startup_program = \
1049 1050
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1051 1052 1053
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1054

1055 1056
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1057 1058 1059 1060 1061

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1062

D
Dong Daxiang 已提交
1063 1064 1065
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1066 1067 1068 1069 1070 1071

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1072
        if copy_user_defined_strategy._is_strict_auto():
1073 1074
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1075
                opt._enable_strategy(copy_user_defined_strategy, context)
1076

1077 1078
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1079
        can_not_apply_optimizer_list = []
1080 1081 1082 1083
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1084
                                copy_user_defined_strategy)
1085 1086
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1087
            elif opt._can_apply() and opt._is_graph_out():
1088
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1089 1090
            else:
                can_not_apply_optimizer_list.append(opt)
1091
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1092
        meta_optimizer, graph_optimizer = \
1093 1094
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1095
                copy_user_defined_strategy, valid_optimizer_list,
1096
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1097

D
Dong Daxiang 已提交
1098
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1099 1100 1101
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1102

1103 1104 1105 1106 1107 1108
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1109
        self._context = context
1110

D
Dong Daxiang 已提交
1111
        self.valid_strategy = valid_strategy
1112
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1113

1114 1115
        optimize_ops = []
        params_grads = []
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1126
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1127

1128 1129
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1130
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1131

1132
            default_program = paddle.static.default_main_program()
1133 1134 1135 1136

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1137 1138
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1139
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1140

1141 1142
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1143

1144
        if graph_optimizer:
D
Dong Daxiang 已提交
1145
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1146
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1147 1148 1149 1150
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1151 1152 1153
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1154
        if self._runtime_handle is None:
1155
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1156

1157 1158
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1159 1160

        return optimize_ops, params_grads