pooling.py 66.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17
from ...fluid.framework import in_dygraph_mode
18 19
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
20
from ...fluid.data_feeder import check_type, check_variable_and_dtype
W
wanghuancoder 已提交
21 22
from paddle import _C_ops
from paddle import _C_ops
23

24 25
__all__ = []

26

27 28 29 30 31
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
32
    if len(x.shape) != dimension:
33 34 35
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
36 37


38
def _check_instance(x, x_name, types=(int, float)):
39 40 41 42 43 44

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


D
Double_V 已提交
45 46 47 48 49 50 51 52 53 54 55
def _check_value_limitation(x, x_name, min_limit=1e-3):
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
                "Excepted the input {} to be greater than {} but received x: {}. ".
                format(x_name, min_limit, x))

    for ele in x:
        _check_value(ele, x_name)


56 57 58
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
59
    else:
60
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
61 62


63 64 65 66
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
67 68


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
91 92


93 94 95 96 97 98 99 100 101
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
102
                raise ValueError(
103 104 105 106 107 108 109 110 111 112 113 114 115 116
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
117
                raise ValueError(
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
138
    else:
139 140 141 142
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

143

144 145 146 147 148 149 150 151 152 153
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
154 155 156 157 158 159 160
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
161
               exclusive=True,
162 163
               ceil_mode=False,
               name=None):
D
Double_V 已提交
164
    """
165 166
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
167 168 169 170

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
171
                          `L` is the length of the feature. The data type is float32 or float64.
172
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
173
            it must contain an integer.
174
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
175 176 177 178 179 180 181 182
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
183
        exclusive (bool): Whether to exclude padding points in average pooling
184
                          mode, default is `True`.
185
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
186
            If it is set to False, the floor function will be used. The default value is False.
187 188 189 190 191 192 193 194 195
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
196 197
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
198 199 200 201
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
202 203 204 205 206 207 208 209
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
210 211 212
    """
    """NCL to NCHW"""
    data_format = "NCHW"
213 214
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
215
    _check_input(x, 3)
216
    x = unsqueeze(x, [2])
217
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
218 219 220 221 222 223 224
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
225 226 227
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

228 229 230
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
231

232 233
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
234 235

    if in_dygraph_mode():
W
wanghuancoder 已提交
236
        output = _C_ops.pool2d(
237 238
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
239
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
240
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
241
            data_format)
242 243 244 245
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
246
    dtype = helper.input_dtype(input_param_name='x')
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
263
            "exclusive": exclusive,
264 265 266 267 268 269
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


270
def avg_pool2d(x,
271 272 273 274
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
275
               exclusive=True,
276 277
               divisor_override=None,
               data_format="NCHW",
278 279
               name=None):
    """
280 281
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
282

283
    Args:
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
304
        exclusive (bool): Whether to exclude padding points in average pooling
305 306 307 308 309
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
310 311 312
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
313
    
314 315
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
316
    
317 318 319 320
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
321
    
322 323
    Examples:
        .. code-block:: python
C
Chen Long 已提交
324 325 326 327 328 329 330 331 332 333 334
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
335
    """
336
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
337 338 339
    if stride is None:
        stride = kernel_size
    else:
340
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
341

D
Double_V 已提交
342 343 344
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

345 346 347
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
348 349

    if in_dygraph_mode():
W
wanghuancoder 已提交
350 351 352 353 354 355
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', kernel_size,
                               'global_pooling', False, 'padding_algorithm',
                               padding_algorithm, 'strides', stride, 'paddings',
                               padding, 'use_cudnn', True, 'ceil_mode',
                               ceil_mode, 'use_mkldnn', False, 'exclusive',
                               exclusive, 'data_format', data_format)
356 357 358 359 360
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
361

362
    op_type = 'pool2d'
363
    helper = LayerHelper(op_type, **locals())
364
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
365
    dtype = helper.input_dtype(input_param_name='x')
366 367 368 369 370
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
371
        outputs={"Out": pool_out},
372
        attrs={
373
            "pooling_type": "avg",
374 375 376 377 378 379 380 381
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
382
            "exclusive": exclusive,
383 384 385
            "data_format": data_format,
        })

386 387 388 389 390
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
391 392


393 394 395 396 397
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
398
               exclusive=True,
399 400 401
               divisor_override=None,
               data_format="NCDHW",
               name=None):
402
    """
403 404
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
405 406

    Args:
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
425
        exclusive (bool): Whether to exclude padding points in average pooling
426 427 428 429 430
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
431
        name(str, optional): For detailed information, please refer
432 433
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
434
    
435
    Returns:
436
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
437
    
438
    Raises:
439 440 441
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
442
    
443 444
    Examples:
        .. code-block:: python
C
Chen Long 已提交
445
          
446
          import paddle
C
Chen Long 已提交
447 448
          import numpy as np

449 450 451 452 453 454 455 456
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
457
    """
458 459 460 461 462
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
463

464 465 466
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
467

D
Double_V 已提交
468 469 470
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

471
    if in_dygraph_mode():
W
wanghuancoder 已提交
472
        output = _C_ops.pool3d(
473 474 475
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
476
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
477
            data_format)
478 479 480 481 482 483
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
484

485 486
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
487
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
488
    dtype = helper.input_dtype(input_param_name='x')
489 490
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
491 492

    helper.append_op(
493
        type=op_type,
494 495 496
        inputs={"X": x},
        outputs=outputs,
        attrs={
497 498 499 500 501 502 503 504 505
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
506
            "exclusive": exclusive,
507
            "data_format": data_format,
508 509
        })

510 511 512 513 514 515
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
516 517


518
def max_pool1d(x,
519 520 521
               kernel_size,
               stride=None,
               padding=0,
522
               return_mask=False,
523 524 525
               ceil_mode=False,
               name=None):
    """
526 527
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
528 529

    Args:
530 531 532
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
533
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
534
            it must contain an integer.
535
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
536 537 538 539 540 541 542 543
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
544
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
545 546
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
547 548 549 550 551
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
552

553 554 555
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
556
        ShapeError: If the input is not a 3-D tensor.
557
        ShapeError: If the output's shape calculated is not greater than 0.
558

559 560
    Examples:
        .. code-block:: python
561

562 563
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
564 565
          import numpy as np

566 567 568
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
569
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
570
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
571
    """
572 573
    """NCL to NCHW"""
    data_format = "NCHW"
574 575
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
576 577 578
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
579 580 581
    if stride is None:
        stride = kernel_size
    else:
582
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
583

584 585
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
586

587 588
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
589 590

    if in_dygraph_mode():
591
        if return_mask:
W
wanghuancoder 已提交
592
            pool_out = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
593 594 595 596 597
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
598 599 600
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
601
        else:
W
wanghuancoder 已提交
602
            pool_out = _C_ops.pool2d(
D
Double_V 已提交
603 604 605 606 607 608 609
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

610
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
611
    helper = LayerHelper(op_type, **locals())
612
    dtype = helper.input_dtype(input_param_name='x')
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

635
    return (squeeze(pool_out, [2]),
636
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
637 638


639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
        default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d]
                            + kernel_size[d] - 2 * padding[d])
    if output_size is None:
        ret = default_size
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                "{} or {} elements, but it has a length of '{}'".format(
                    len(kernel_size), len(kernel_size) + 2, len(output_size)))
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
                    'invalid output_size "{}" (dim {} must be between {} and {})'.
                    format(output_size, d, min_size, max_size))

        ret = output_size
    return ret


def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
675
    """
676 677 678 679 680 681 682 683 684 685 686 687
    This API implements max unpooling 2d opereation.

    `max_unpool2d` is not fully invertible, since the non-maximal values are lost.

    `max_unpool2d` takes in as input the output of `max_unpool2d`
    including the indices of the maximal values and computes a partial inverse
    in which all non-maximal values are set to zero.
    
    `max_unpool2d` can map several input sizes to the same output
    sizes. Hence, the inversion process can get ambiguous.
    To accommodate this, you can provide the needed output size
    as an additional argument `output_size` in the forward call.
688 689

    Args:
690 691 692
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`, 
                          where `N` is batch size, `C` is the number of channels,
693 694
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
695 696 697 698 699 700 701 702 703 704 705 706 707 708
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` , 
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
709 710 711
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
            Tensor: The output tensor of unpooling result. 

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
            

        Examples:
            .. code-block:: python
          
C
Chen Long 已提交
736 737 738
            import paddle
            import paddle.nn.functional as F
            import numpy as np
739 740 741 742 743 744 745 746 747 748 749

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 1, 6, 6]).astype(np.float32))
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

            # specify a different output size than input size 
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
            # unpool_out shape: [1, 1, 7, 7] 

750 751
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

    if in_dygraph_mode():
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x,
                "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size
        })
    return unpool_out


def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
801 802 803 804 805 806 807 808 809
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
810 811 812 813 814

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
815

816
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
817
        raise ValueError(
818
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
819 820
        )

821
    if in_dygraph_mode():
822
        if return_mask:
W
wanghuancoder 已提交
823
            output = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
824 825 826 827 828
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
829
            return output if return_mask else output[0]
D
Double_V 已提交
830
        else:
W
wanghuancoder 已提交
831
            output = _C_ops.pool2d(
D
Double_V 已提交
832 833 834 835 836 837
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
838

839
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
840
    helper = LayerHelper(op_type, **locals())
841 842
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
843
    dtype = helper.input_dtype(input_param_name='x')
844
    pool_out = helper.create_variable_for_type_inference(dtype)
845 846
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}
847 848 849 850

    helper.append_op(
        type=op_type,
        inputs={"X": x},
851
        outputs=outputs,
852
        attrs={
853
            "pooling_type": 'max',
854 855 856
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
857
            "paddings": padding,
858 859 860 861
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
862
            "exclusive": True,
863 864 865
            "data_format": data_format,
        })

866
    return (pool_out, mask) if return_mask else pool_out
867 868 869 870 871 872


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
873
               return_mask=False,
874 875 876 877
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
878 879
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
880 881
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
882
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
883
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
884
            is a tuple or list, it must contain three integers,
885
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
886
            Otherwise, the pool kernel size will be the cube of an int.
887 888
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
889
            Otherwise, the pool stride size will be a cube of an int.
890 891 892 893 894 895 896
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
897
        ceil_mode (bool): ${ceil_mode_comment}
898
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
899 900 901 902 903 904
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
905
    
906 907
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
908
    
909 910 911 912
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
913
    
914 915
    Examples:
        .. code-block:: python
916

C
Chen Long 已提交
917 918 919
            import paddle
            import paddle.nn.functional as F
            import numpy as np
920

C
Chen Long 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
935 936 937 938 939 940 941
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

942
    channel_last = _channel_last(data_format, 3)
943

944 945
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
946

947
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
948
        raise ValueError(
949
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
950 951
        )

952
    if in_dygraph_mode():
953
        if return_mask:
W
wanghuancoder 已提交
954
            output = _C_ops.max_pool3d_with_index(
D
Double_V 已提交
955 956 957 958 959
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
960
            return output if return_mask else output[0]
D
Double_V 已提交
961
        else:
W
wanghuancoder 已提交
962
            output = _C_ops.pool3d(
D
Double_V 已提交
963 964 965 966 967 968
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
969

970
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
971
    helper = LayerHelper(op_type, **locals())
972
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
973
    dtype = helper.input_dtype(input_param_name='x')
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

996
    return (pool_out, mask) if return_mask else pool_out
997 998


999
def adaptive_avg_pool1d(x, output_size, name=None):
1000
    """
1001 1002
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1003

1004
    Args:
1005 1006 1007 1008
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1009
        output_size (int): The target output size. It must be an integer.
1010
        name(str, optional): For detailed information, please refer
1011 1012
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
1013
    Returns:
1014 1015
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
1016
    Raises:
1017
            ValueError: 'output_size' should be an integer.
1018 1019
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1035
              import numpy as np
1036

1037 1038 1039 1040 1041
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
1042 1043 1044 1045
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1046 1047
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1048

1049
    x = unsqueeze(x, [2])
1050
    if in_dygraph_mode():
W
wanghuancoder 已提交
1051 1052
        pool_out = _C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                 pool_size, 'adaptive', True)
1053
        return squeeze(pool_out, [2])
1054

1055 1056
    l_type = "pool2d"

1057
    helper = LayerHelper(l_type, **locals())
1058
    dtype = helper.input_dtype(input_param_name='x')
1059 1060
    pool_out = helper.create_variable_for_type_inference(dtype)

1061
    outputs = {"Out": pool_out}
1062
    helper.append_op(
1063
        type=l_type,
1064 1065 1066
        inputs={"X": x},
        outputs=outputs,
        attrs={
1067 1068 1069
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
1070 1071
        })

1072
    return squeeze(pool_out, [2])
1073 1074


1075 1076
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1077 1078
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
1079 1080 1081

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1082
                          The data type can be float32 or float64.
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1116

1117 1118 1119
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1120
            out = paddle.nn.functional.adaptive_avg_pool2d(
1121 1122
                            x = x,
                            output_size=[3, 3])
1123
            # out.shape is [2, 3, 3, 3]
1124 1125
    """
    if not in_dygraph_mode():
1126
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1127
                                 'adaptive_avg_pool2d')
1128
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1143
        output_size = list(output_size)
1144 1145 1146 1147 1148 1149
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1150 1151 1152
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                               'global_pooling', False, 'adaptive', True,
                               'data_format', data_format)
1153 1154 1155 1156 1157
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1158
    dtype = helper.input_dtype(input_param_name='x')
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1179 1180
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1181 1182 1183

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1184
                          The data type can be float32, float64.
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1224
            out = paddle.nn.functional.adaptive_avg_pool3d(
1225 1226
                            x = x,
                            output_size=[3, 3, 3])
1227
            # out.shape is [2, 3, 3, 3, 3]
1228 1229
    """
    if not in_dygraph_mode():
1230 1231
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1232
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1247
        output_size = list(output_size)
1248 1249 1250 1251 1252 1253 1254 1255
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1256 1257 1258
        output = _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                               'global_pooling', False, 'adaptive', True,
                               'data_format', data_format)
1259 1260 1261 1262 1263
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1264
    dtype = helper.input_dtype(input_param_name='x')
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1280 1281


1282
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1283 1284 1285 1286 1287 1288 1289 1290 1291
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1292
        output_size (int): The pool kernel size. The value should be an integer.
1293
        return_mask (bool): If true, the index of max pooling point will be returned along
1294 1295 1296 1297 1298 1299 1300 1301
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1302
            ValueError: 'output_size' should be an integer.
1303 1304
    Examples:
        .. code-block:: python
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1320
              import numpy as np
1321

1322 1323 1324
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1325
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1326 1327 1328
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
1329 1330 1331 1332 1333
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1334 1335 1336 1337 1338 1339
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
W
wanghuancoder 已提交
1340
        pool_out = _C_ops.max_pool2d_with_index(
1341 1342
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1343
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1344

1345 1346
    l_type = 'max_pool2d_with_index'

1347
    helper = LayerHelper(l_type, **locals())
1348
    dtype = helper.input_dtype(input_param_name='x')
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1365
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1366 1367


1368
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1369 1370 1371
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1372

1373 1374 1375
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1376
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1377
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1378

1379 1380
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1381

1382 1383
        Examples:
            .. code-block:: python
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1414 1415
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1416 1417 1418 1419 1420 1421
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1422
        output_size = list(output_size)
1423 1424 1425 1426 1427 1428
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1429
        pool_out = _C_ops.max_pool2d_with_index(
1430
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1431
        return pool_out if return_mask else pool_out[0]
1432 1433 1434 1435

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1436
    dtype = helper.input_dtype(input_param_name='x')
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1451
    #return (pool_out, mask) if return_mask else pool_out
1452 1453 1454
    return pool_out


1455
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1456 1457 1458
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1459

1460 1461 1462
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1463
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1464
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1465

1466 1467
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1468

1469 1470
        Examples:
            .. code-block:: python
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1505 1506
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1507 1508 1509 1510 1511 1512
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1513
        output_size = list(output_size)
1514 1515 1516 1517 1518 1519 1520 1521
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1522
        pool_out = _C_ops.max_pool3d_with_index(
1523
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1524
        return pool_out if return_mask else pool_out[0]
1525 1526 1527 1528

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1529
    dtype = helper.input_dtype(input_param_name='x')
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1545
    return (pool_out, mask) if return_mask else pool_out