未验证 提交 0dfe26d0 编写于 作者: D Double_V 提交者: GitHub

add pool unittest (#26949)

上级 8aebcabf
develop 2.0.1-rocm-post Ligoml-patch-1 OliverLPH-patch-1 OliverLPH-patch-2 PaddlePM-patch-1 PaddlePM-patch-2 ZHUI-patch-1 add_default_att add_model_benchmark_ci add_some_yaml_config addfile all_new_design_exec ascendrc ascendrelease cherry_undefined_var compile_windows delete_2.0.1-rocm-post delete_add_default_att delete_all_new_design_exec delete_ascendrc delete_compile_windows delete_delete_addfile delete_disable_iterable_dataset_unittest delete_fix_dataloader_memory_leak delete_fix_imperative_dygraph_error delete_fix_retry_ci delete_fix_undefined_var delete_improve_sccache delete_paralleltest delete_prv-disable-more-cache delete_revert-31068-fix_conv3d_windows delete_revert-31562-mean delete_revert-33630-bug-fix delete_revert-34159-add_npu_bce_logical_dev delete_revert-34910-spinlocks_for_allocator delete_revert-35069-revert-34910-spinlocks_for_allocator delete_revert-36057-dev/read_flags_in_ut dingjiaweiww-patch-1 disable_iterable_dataset_unittest dy2static enable_eager_model_test final_state_gen_python_c final_state_intermediate fix-numpy-issue fix_concat_slice fix_dataloader_memory_leak fix_imperative_dygraph_error fix_npu_ci fix_op_flops fix_retry_ci fix_rnn_docs fix_tensor_type fix_undefined_var fixiscan fixiscan1 fixiscan2 fixiscan3 github/fork/123malin/netifaces github/fork/123malin/tdm_abacus github/fork/AshburnLee/dev_unique github/fork/ForFishes/fix_memory_matmul github/fork/ForFishes/rm_fluid github/fork/LielinJiang/move-2.0-api github/fork/LielinJiang/visual-dl-cb github/fork/LiuChiachi/add-transformer-generate-square-subsequent-mask-api github/fork/LiuChiachi/fix-example-code-for-hapi-Model github/fork/LiuChiachi/remove-input-requirment-in-dygraph-Model github/fork/MrChengmo/fix_ps_profiler github/fork/MrChengmo/update_ps_heter github/fork/PWhiddy/patch-1 github/fork/Shixiaowei02/dev/save_load_upgrade github/fork/TCChenlong/fix_hapi github/fork/TCChenlong/fix_inden github/fork/Thunderbrook/xpu_slice github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var_3 github/fork/XieYunshen/timeout_20S_ut github/fork/ZeyuChen/remove-nltk github/fork/arlesniak/arlesniak/selective__mkldnn_flags github/fork/baiyfbupt/code_doc_mig github/fork/chalsliu/set_timeout github/fork/chen-zhiyu/develop github/fork/chenwhql/ci/try_to_find_test_buffer_shared_memory_reuse_pass_error github/fork/chenwhql/dygraph/remove_scale_loss_and_apply_collective_grads github/fork/chenwhql/saveload/add_get_inference_program github/fork/chenwhql/saveload/remove_save_load_config github/fork/cryoco/pass-compatibility-trt github/fork/danleifeng/isempty_api2.0 github/fork/frankwhzhang/api_transfer github/fork/hbwx24/error_msg/cuda_kernel_error_msg github/fork/heavengate/update_yolo_box github/fork/iclementine/rnn_fix github/fork/iducn/testestse github/fork/jczaja/prv-25537-fix github/fork/jiweibo/api_2.0 github/fork/jiweibo/fix_lite_resnet50_test github/fork/juncaipeng/fix_doc_1 github/fork/lfchener/sample_code github/fork/littletomatodonkey/fix_reg_doc github/fork/liym27/dy2stat_update_assign_to_rc20 github/fork/luotao1/profiler_ut github/fork/mapingshuo/add_wait github/fork/mapingshuo/doc_2.0 github/fork/mapingshuo/zero-0.5 github/fork/miraiwk/dev github/fork/pangyoki/add-Categorical-class-branch github/fork/pangyoki/add-multinomial-op-branch github/fork/pangyoki/fix-test_distritbution-CI github/fork/qjing666/doublegrad github/fork/qjing666/fix_hdfs_download github/fork/sandyhouse/add_gather_etc github/fork/sandyhouse/add_send_recv_alltoall_etc github/fork/seiriosPlus/feature/large_scale_kv_save_delta github/fork/seiriosPlus/fix/paddle_errors_fix github/fork/seiriosPlus/fix/paddle_op_errors github/fork/shangzhizhou/fix_test_activation_op_random_bug github/fork/smallv0221/yxp0924 github/fork/smallv0221/yxp0925 github/fork/swtkiwi/del-matplotlib github/fork/tianshuo78520a/kunlun_test github/fork/tianshuo78520a/update_dockerfile github/fork/wanghaoshuang/bert_fuse github/fork/wanghaoshuang/label_smooth github/fork/wanghuancoder/develop_CUDASynchronize github/fork/wanghuancoder/develop_Layer_doc github/fork/wanghuancoder/develop_ParameterList_doc github/fork/wanghuancoder/develop_Sequential_doc github/fork/wanghuancoder/develop_bilinear_tensor_product github/fork/wanghuancoder/develop_coverage_build_sh github/fork/wanghuancoder/develop_in_dynamic_mode_doc github/fork/wanghuancoder/develop_unique_name_doc github/fork/wangxicoding/fleet_meta_combine github/fork/wawltor/error_message_fix_5 github/fork/willthefrog/remove_l2_norm github/fork/windstamp/momentum_op github/fork/windstamp/mv_op_5 github/fork/windstamp/normal_api github/fork/wojtuss/wojtuss/fusion_gru_quantization github/fork/wojtuss/wojtuss/quantization-with-shift github/fork/wzzju/fix_err_info github/fork/wzzju/pure_fp16 github/fork/xiemoyuan/op_error_message github/fork/xiemoyuan/optimize_error_message github/fork/yaoxuefeng6/fix_doc github/fork/yaoxuefeng6/mod_dataset_v2 github/fork/ysh329/fix-clip-by-norm-error github/fork/ysh329/fix-error-clip-by-value github/fork/yukavio/error_info github/fork/zhangting2020/conv_filter_grad github/fork/zhangting2020/is_compile_with_cuda github/fork/zhangting2020/place_doc github/fork/zhangting2020/program github/fork/zhhsplendid/fix_any github/fork/zhhsplendid/refine_api2 github/fork/zhhsplendid/refine_api2_test github/fork/zhhsplendid/refine_api_test_ptb_lm github/fork/zhhsplendid/refine_api_test_resnet github/fork/zhhsplendid/refine_api_test_simnet github/fork/zhiqiu/dev/refine_initializer github/fork/zhiqiu/dev/remove_inplace_argument github/fork/zlsh80826/nvinfer_plugin_var_len_cuda11 improve_sccache incubate/infrt inplace_addto make_flag_adding_easier move_embedding_to_phi move_histogram_to_pten move_sgd_to_phi move_slice_to_pten move_temporal_shift_to_phi move_yolo_box_to_phi npu_fix_alloc numel paralleltest preln_ernie prv-disable-more-cache prv-md-even-more prv-onednn-2.5 pten_tensor_refactor release/2.0 release/2.0-rc release/2.0-rc1 release/2.1 release/2.2 release/2.3 release/2.3-fc-ernie-fix release/2.4 revert-27520-disable_pr revert-31068-fix_conv3d_windows revert-31562-mean revert-32290-develop-hardlabel revert-33037-forci revert-33475-fix_cifar_label_dimension revert-33630-bug-fix revert-34159-add_npu_bce_logical_dev revert-34406-add_copy_from_tensor revert-34910-spinlocks_for_allocator revert-35069-revert-34910-spinlocks_for_allocator revert-36057-dev/read_flags_in_ut revert-36201-refine_fast_threaded_ssa_graph_executor revert-36985-add_license revert-37318-refactor_dygraph_to_eager revert-37926-eager_coreops_500 revert-37956-revert-37727-pylayer_support_tuple revert-38100-mingdong revert-38301-allocation_rearrange_pr revert-38703-numpy_bf16_package_reupload revert-38732-remove_useless_header_in_elementwise_mul_grad revert-38959-Reduce_Grad revert-39143-adjust_empty revert-39227-move_trace_op_to_pten revert-39268-dev/remove_concat_fluid_kernel revert-40170-support_partial_grad revert-41056-revert-40727-move_some_activaion_to_phi revert-41065-revert-40993-mv_ele_floordiv_pow revert-41068-revert-40790-phi_new revert-41944-smaller_inference_api_test revert-42149-do-not-reset-default-stream-for-stream-safe-cuda-allocator revert-43155-fix_ut_tempfile revert-43882-revert-41944-smaller_inference_api_test revert-45808-phi/simplify_size_op revert-46827-deform_comment rocm_dev_0217 support_weight_transpose test_benchmark_ci test_model_benchmark test_model_benchmark_ci zhiqiu-patch-1 v2.4.0-rc0 v2.3.2 v2.3.1 v2.3.0 v2.3.0-rc0 v2.2.2 v2.2.1 v2.2.0 v2.2.0-rc0 v2.2.0-bak0 v2.1.3 v2.1.2 v2.1.1 v2.1.0 v2.1.0-rc0 v2.0.2 v2.0.1 v2.0.0 v2.0.0-rc1 v2.0.0-rc0
无相关合并请求
......@@ -143,6 +143,27 @@ class TestPool1d_API(unittest.TestCase):
result = avg_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_avg_dygraph_padding_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = F.avg_pool1d(
input,
kernel_size=2,
stride=2,
padding=[1],
count_include_pad=True)
result_np = avg_pool1D_forward_naive(
input_np, ksize=[2], strides=[2], paddings=[1], exclusive=False)
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool1d_dg = paddle.nn.AvgPool1d(
kernel_size=2, stride=None, padding=1, count_include_pad=True)
result = avg_pool1d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from test_pool2d_op import adaptive_start_index, adaptive_end_index, pool2D_forward_naive
from test_pool2d_op import adaptive_start_index, adaptive_end_index, pool2D_forward_naive, avg_pool2D_forward_naive, max_pool2D_forward_naive
import unittest
from op_test import OpTest
import numpy as np
......@@ -68,6 +68,47 @@ class TestPool2d_API(unittest.TestCase):
result = avg_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_avg_dygraph_padding_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool2d(
input, kernel_size=2, stride=2, padding=1, ceil_mode=False)
result_np = avg_pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[1, 1],
ceil_mode=False,
exclusive=False)
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool2d_dg = paddle.nn.layer.AvgPool2d(
kernel_size=2, stride=2, padding=1, ceil_mode=False)
result = avg_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_avg_dygraph_ceilmode_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool2d(
input, kernel_size=2, stride=2, padding=0, ceil_mode=True)
result_np = avg_pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
ceil_mode=True)
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool2d_dg = paddle.nn.layer.AvgPool2d(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
result = avg_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
......@@ -108,6 +149,70 @@ class TestPool2d_API(unittest.TestCase):
result = max_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_nhwc_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(
np.transpose(input_np, [0, 2, 3, 1]))
result = max_pool2d(
input,
kernel_size=2,
stride=2,
padding=0,
return_indices=False,
data_format="NHWC")
result_np = pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
pool_type='max')
self.assertTrue(
np.allclose(
np.transpose(result.numpy(), [0, 3, 1, 2]), result_np))
def check_max_dygraph_padding_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool2d(
input, kernel_size=2, stride=2, padding=1, ceil_mode=False)
result_np = max_pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[1, 1],
ceil_mode=False,
exclusive=False)
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool2d_dg = paddle.nn.layer.MaxPool2d(
kernel_size=2, stride=2, padding=1, ceil_mode=False)
result = max_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_ceilmode_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool2d(
input, kernel_size=2, stride=2, padding=0, ceil_mode=True)
result_np = max_pool2D_forward_naive(
input_np,
ksize=[2, 2],
strides=[2, 2],
paddings=[0, 0],
ceil_mode=True)
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool2d_dg = paddle.nn.layer.MaxPool2d(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
result = max_pool2d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_stride_is_none(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32]).astype("float32")
......@@ -215,6 +320,9 @@ class TestPool2d_API(unittest.TestCase):
self.check_avg_dygraph_stride_is_none(place)
self.check_max_dygraph_padding(place)
self.check_avg_divisor(place)
self.check_max_dygraph_padding_results(place)
self.check_max_dygraph_ceilmode_results(place)
self.check_max_dygraph_nhwc_results(place)
class TestPool2dError_API(unittest.TestCase):
......@@ -370,6 +478,22 @@ class TestPool2dError_API(unittest.TestCase):
self.assertRaises(ValueError, run8)
def run9():
with fluid.dygraph.guard():
input_np = np.random.uniform(-1, 1,
[2, 3, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = max_pool2d(
input_pd,
kernel_size=2,
stride=2,
padding=0,
ceil_mode=False,
data_format='NHWC',
return_indices=True)
self.assertRaises(ValueError, run9)
if __name__ == '__main__':
unittest.main()
......@@ -22,7 +22,7 @@ import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.nn.functional import avg_pool3d, max_pool3d
from test_pool3d_op import adaptive_start_index, adaptive_end_index, pool3D_forward_naive
from test_pool3d_op import adaptive_start_index, adaptive_end_index, pool3D_forward_naive, avg_pool3D_forward_naive, max_pool3D_forward_naive
class TestPool3d_API(unittest.TestCase):
......@@ -73,6 +73,58 @@ class TestPool3d_API(unittest.TestCase):
result = avg_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_avg_dygraph_padding_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool3d(
input,
kernel_size=2,
stride=2,
padding=1,
ceil_mode=False,
count_include_pad=True)
result_np = avg_pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[1, 1, 1],
ceil_mode=False,
exclusive=False)
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool3d_dg = paddle.nn.layer.AvgPool3d(
kernel_size=2,
stride=None,
padding=1,
ceil_mode=False,
count_include_pad=True)
result = avg_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_avg_dygraph_ceilmode_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = avg_pool3d(
input, kernel_size=2, stride=2, padding=0, ceil_mode=True)
result_np = avg_pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
ceil_mode=True)
self.assertTrue(np.allclose(result.numpy(), result_np))
avg_pool3d_dg = paddle.nn.layer.AvgPool3d(
kernel_size=2, stride=None, padding=0, ceil_mode=True)
result = avg_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_static_results(self, place):
with fluid.program_guard(fluid.Program(), fluid.Program()):
input = fluid.data(
......@@ -112,6 +164,74 @@ class TestPool3d_API(unittest.TestCase):
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_ndhwc_results(self, place):
print("run ndchw max pool3d")
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(
np.transpose(input_np, [0, 2, 3, 4, 1]))
result = max_pool3d(
input,
kernel_size=2,
stride=2,
padding=0,
data_format="NDHWC",
return_indices=False)
result_np = pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
pool_type='max')
self.assertTrue(
np.allclose(
np.transpose(result.numpy(), [0, 4, 1, 2, 3]), result_np))
def check_max_dygraph_ceilmode_results(self, place):
print("run ceil mode max pool3d")
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool3d(
input, kernel_size=2, stride=2, padding=0, ceil_mode=True)
result_np = max_pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[0, 0, 0],
ceil_mode=True)
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool3d_dg = paddle.nn.layer.MaxPool3d(
kernel_size=2, stride=None, padding=0, ceil_mode=True)
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_padding_results(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
input = fluid.dygraph.to_variable(input_np)
result = max_pool3d(
input, kernel_size=2, stride=2, padding=1, ceil_mode=False)
result_np = max_pool3D_forward_naive(
input_np,
ksize=[2, 2, 2],
strides=[2, 2, 2],
paddings=[1, 1, 1],
ceil_mode=False)
self.assertTrue(np.allclose(result.numpy(), result_np))
max_pool3d_dg = paddle.nn.layer.MaxPool3d(
kernel_size=2, stride=None, padding=1, ceil_mode=False)
result = max_pool3d_dg(input)
self.assertTrue(np.allclose(result.numpy(), result_np))
def check_max_dygraph_stride_is_none(self, place):
with fluid.dygraph.guard(place):
input_np = np.random.random([2, 3, 32, 32, 32]).astype("float32")
......@@ -205,6 +325,8 @@ class TestPool3d_API(unittest.TestCase):
self.check_max_dygraph_stride_is_none(place)
self.check_max_dygraph_padding(place)
self.check_avg_divisor(place)
self.check_max_dygraph_ndhwc_results(place)
self.check_max_dygraph_ceilmode_results(place)
class TestPool3dError_API(unittest.TestCase):
......@@ -336,6 +458,21 @@ class TestPool3dError_API(unittest.TestCase):
self.assertRaises(ValueError, run9)
def run10():
with fluid.dygraph.guard():
input_np = np.random.uniform(
-1, 1, [2, 3, 32, 32, 32]).astype(np.float32)
input_pd = fluid.dygraph.to_variable(input_np)
res_pd = max_pool3d(
input_pd,
kernel_size=2,
stride=2,
padding=0,
data_format='NDHWC',
return_indices=True)
self.assertRaises(ValueError, run10)
if __name__ == '__main__':
unittest.main()
......@@ -168,7 +168,7 @@ def avg_pool1d(x,
count_include_pad=True,
ceil_mode=False,
name=None):
"""
"""
This API implements average pooling 1d operation,
See more details in :ref:`api_nn_pooling_AvgPool1d` .
......@@ -280,7 +280,7 @@ def avg_pool2d(x,
"""
This API implements average pooling 2d operation.
See more details in :ref:`api_nn_pooling_AvgPool2d` .
Args:
x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
......@@ -640,7 +640,7 @@ def max_pool2d(x,
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
The default value is 0.
ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
return_indices (bool): Whether to return the max indices along with the outputs.
return_indices (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
......@@ -690,15 +690,30 @@ def max_pool2d(x,
padding, padding_algorithm = _update_padding_nd(
padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
if data_format == "NHWC" and return_indices:
raise ValueError(
"When setting return_indices to true, data_format must be set to NCHW in API:max_pool2d"
)
if in_dygraph_mode():
output = core.ops.max_pool2d_with_index(
x, 'ksize', kernel_size, 'global_pooling', False, 'strides', stride,
'paddings', padding, 'padding_algorithm', padding_algorithm,
'use_cudnn', True, 'ceil_mode', ceil_mode, 'use_mkldnn', False,
'exclusive', True, 'data_format', data_format)
return output if return_indices else output[0]
if data_format == "NCHW":
output = core.ops.max_pool2d_with_index(
x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
stride, 'paddings', padding, 'padding_algorithm',
padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
'use_mkldnn', False, 'exclusive', True, 'data_format',
data_format)
return output if return_indices else output[0]
elif data_format == "NHWC" and not return_indices:
output = core.ops.pool2d(
x, 'pooling_type', 'max', 'ksize', kernel_size,
'global_pooling', False, 'padding_algorithm', padding_algorithm,
'strides', stride, 'paddings', padding, 'use_cudnn', True,
'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
'data_format', data_format)
return output
op_type = 'max_pool2d_with_index'
op_type = 'max_pool2d_with_index' if data_format == "NCHW" else "max_pool2d"
helper = LayerHelper(op_type, **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
......@@ -739,7 +754,7 @@ def max_pool3d(x,
See more details in :ref:`api_nn_pooling_MaxPool3d` .
Args:
x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
kernel_size (int|list|tuple): The pool kernel size. If the kernel size
is a tuple or list, it must contain three integers,
(kernel_size_Depth, kernel_size_Height, kernel_size_Width).
......@@ -755,7 +770,7 @@ def max_pool3d(x,
5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
The default value is 0.
ceil_mode (bool): ${ceil_mode_comment}
return_indices (bool): Whether to return the max indices along with the outputs.
return_indices (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_depth, input_height, input_width]`.
......@@ -801,15 +816,30 @@ def max_pool3d(x,
padding, padding_algorithm = _update_padding_nd(
padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
if data_format == "NDHWC" and return_indices:
raise ValueError(
"When setting return_indices to true, data_format must be set to NCDHW in API:max_pool3d"
)
if in_dygraph_mode():
output = core.ops.max_pool3d_with_index(
x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides', stride,
'paddings', padding, 'global_pooling', False, 'padding_algorithm',
padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
'use_mkldnn', False, 'exclusive', True, 'data_format', data_format)
return output if return_indices else output[0]
if data_format == "NCDHW":
output = core.ops.max_pool3d_with_index(
x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
stride, 'paddings', padding, 'global_pooling', False,
'padding_algorithm', padding_algorithm, 'use_cudnn', True,
'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
'data_format', data_format)
return output if return_indices else output[0]
elif data_format == "NDHWC" and not return_indices:
output = core.ops.pool3d(
x, 'pooling_type', 'max', 'ksize', kernel_size,
'global_pooling', False, 'padding_algorithm', padding_algorithm,
'strides', stride, 'paddings', padding, 'use_cudnn', True,
'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
'data_format', data_format)
return output
op_type = "max_pool3d_with_index"
op_type = "max_pool3d_with_index" if data_format == "NCDHW" else "max_pool3d"
helper = LayerHelper(op_type, **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
......@@ -841,7 +871,7 @@ def adaptive_avg_pool1d(x, output_size, name=None):
"""
This API implements adaptive average pooling 1d operation.
See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
Args:
x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
with shape [N, C, L]. The format of input tensor is NCL,
......
......@@ -854,7 +854,7 @@ class AdaptiveMaxPool1d(layers.Layer):
lend &= ceil((i + 1) * L_{in} / L_{out})
Output(i) &= max(Input[lstart:lend])}
Output(i) &= max(Input[lstart:lend])
Args:
output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
......@@ -939,7 +939,7 @@ class AdaptiveMaxPool2d(layers.Layer):
Shape:
x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
output (Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type is same as input x.
Returns:
A callable object of AdaptiveMaxPool2d.
Examples:
......@@ -1043,7 +1043,7 @@ class AdaptiveMaxPool3d(layers.Layer):
pool = paddle.nn.AdaptiveMaxPool3d(output_size=3, return_indices=True)
out, indices = pool(x)
# out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
"""
def __init__(self, output_size, return_indices=False, name=None):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
反馈
建议
客服 返回
顶部