train.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import os
import random
import argparse
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore import dataset as de
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.optim.momentum import Momentum
Y
yao_yf 已提交
25 26
from mindspore.train.model import Model
from mindspore.context import ParallelMode
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from src.lr_generator import get_lr, warmup_cosine_annealing_lr

parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')

parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
Z
ZPaC 已提交
45
parser.add_argument('--parameter_server', type=bool, default=False, help='Run parameter server train')
46 47 48 49 50 51 52 53 54 55 56 57 58 59
args_opt = parser.parse_args()

random.seed(1)
np.random.seed(1)
de.config.set_seed(1)

if args_opt.net == "resnet50":
    from src.resnet import resnet50 as resnet
    if args_opt.dataset == "cifar10":
        from src.config import config1 as config
        from src.dataset import create_dataset1 as create_dataset
    else:
        from src.config import config2 as config
        from src.dataset import create_dataset2 as create_dataset
Q
qujianwei 已提交
60
elif args_opt.net == "resnet101":
61 62 63
    from src.resnet import resnet101 as resnet
    from src.config import config3 as config
    from src.dataset import create_dataset3 as create_dataset
Q
qujianwei 已提交
64 65 66 67 68
else:
    from src.resnet import se_resnet50 as resnet
    from src.config import config4 as config
    from src.dataset import create_dataset4 as create_dataset

69 70 71 72 73 74 75 76 77 78 79 80 81

if __name__ == '__main__':
    target = args_opt.device_target
    ckpt_save_dir = config.save_checkpoint_path

    # init context
    context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
    if args_opt.run_distribute:
        if target == "Ascend":
            device_id = int(os.getenv('DEVICE_ID'))
            context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
            context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
                                              mirror_mean=True)
Q
qujianwei 已提交
82
            if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
83
                auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
84 85 86 87 88
            else:
                auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
            init()
        # GPU target
        else:
Y
yuchaojie 已提交
89
            init("nccl")
90 91
            context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
                                              mirror_mean=True)
92 93
            if args_opt.net == "resnet50":
                auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
94 95 96
            ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"

    # create dataset
R
RobinGrosman 已提交
97 98
    dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
                             batch_size=config.batch_size, target=target)
99 100 101 102
    step_size = dataset.get_dataset_size()

    # define net
    net = resnet(class_num=config.class_num)
Z
ZPaC 已提交
103 104
    if args_opt.parameter_server:
        net.set_param_ps()
105 106 107 108 109 110 111 112 113

    # init weight
    if args_opt.pre_trained:
        param_dict = load_checkpoint(args_opt.pre_trained)
        load_param_into_net(net, param_dict)
    else:
        for _, cell in net.cells_and_names():
            if isinstance(cell, nn.Conv2d):
                cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
W
z  
Wei Luning 已提交
114 115
                                                                    cell.weight.shape,
                                                                    cell.weight.dtype)
116 117
            if isinstance(cell, nn.Dense):
                cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
W
z  
Wei Luning 已提交
118 119
                                                                    cell.weight.shape,
                                                                    cell.weight.dtype)
120 121

    # init lr
Q
qujianwei 已提交
122 123 124 125
    if args_opt.net == "resnet50" or args_opt.net == "se-resnet50":
        lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
                    warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
                    lr_decay_mode=config.lr_decay_mode)
126
    else:
R
RobinGrosman 已提交
127
        lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
128 129 130 131
                                        config.pretrain_epoch_size * step_size)
    lr = Tensor(lr)

    # define opt
W
z  
Wei Luning 已提交
132 133 134 135 136 137 138 139
    decayed_params = []
    no_decayed_params = []
    for param in net.trainable_params():
        if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
            decayed_params.append(param)
        else:
            no_decayed_params.append(param)

140 141
    group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
                    {'params': no_decayed_params},
G
guoqi 已提交
142
                    {'order_params': net.trainable_params()}]
143
    opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
144 145 146 147 148
    # define loss, model
    if target == "Ascend":
        if args_opt.dataset == "imagenet2012":
            if not config.use_label_smooth:
                config.label_smooth_factor = 0.0
149 150
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
                                                 smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
151 152 153 154 155 156 157
        else:
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
        loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
        model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
                      amp_level="O2", keep_batchnorm_fp32=False)
    else:
        # GPU target
V
VectorSL 已提交
158 159 160 161 162 163 164 165
        if args_opt.dataset == "imagenet2012":
            if not config.use_label_smooth:
                config.label_smooth_factor = 0.0
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
                                                 smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
        else:
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
                                                 num_classes=config.class_num)
P
panfengfeng 已提交
166

167
        if args_opt.net == "resnet101" or args_opt.net == "resnet50":
P
panfengfeng 已提交
168 169 170 171 172 173 174 175 176 177
            opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
                           config.loss_scale)
            loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
            # Mixed precision
            model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
                          amp_level="O2", keep_batchnorm_fp32=True)
        else:
            ## fp32 training
            opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay)
            model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
178 179 180 181 182 183 184 185 186 187 188 189

    # define callbacks
    time_cb = TimeMonitor(data_size=step_size)
    loss_cb = LossMonitor()
    cb = [time_cb, loss_cb]
    if config.save_checkpoint:
        config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
                                     keep_checkpoint_max=config.keep_checkpoint_max)
        ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
        cb += [ckpt_cb]

    # train model
Q
qujianwei 已提交
190 191
    if args_opt.net == "se-resnet50":
        config.epoch_size = config.train_epoch_size
192 193
    model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
                dataset_sink_mode=(not args_opt.parameter_server))