train.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import os
import random
import argparse
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore import dataset as de
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from src.lr_generator import get_lr, warmup_cosine_annealing_lr

parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')

parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
Z
ZPaC 已提交
44
parser.add_argument('--parameter_server', type=bool, default=False, help='Run parameter server train')
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
args_opt = parser.parse_args()

random.seed(1)
np.random.seed(1)
de.config.set_seed(1)

if args_opt.net == "resnet50":
    from src.resnet import resnet50 as resnet

    if args_opt.dataset == "cifar10":
        from src.config import config1 as config
        from src.dataset import create_dataset1 as create_dataset
    else:
        from src.config import config2 as config
        from src.dataset import create_dataset2 as create_dataset
else:
    from src.resnet import resnet101 as resnet
    from src.config import config3 as config
    from src.dataset import create_dataset3 as create_dataset

if __name__ == '__main__':
    target = args_opt.device_target
    ckpt_save_dir = config.save_checkpoint_path

    # init context
    context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
    if args_opt.run_distribute:
        if target == "Ascend":
            device_id = int(os.getenv('DEVICE_ID'))
            context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
            context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
                                              mirror_mean=True)
            if args_opt.net == "resnet50":
78
                auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
79 80 81 82 83 84 85
            else:
                auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
            init()
        # GPU target
        else:
            context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
                                              mirror_mean=True)
86 87 88
            if args_opt.net == "resnet50":
                auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
            init("nccl")
89 90 91
            ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"

    # create dataset
R
RobinGrosman 已提交
92 93
    dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
                             batch_size=config.batch_size, target=target)
94 95 96 97
    step_size = dataset.get_dataset_size()

    # define net
    net = resnet(class_num=config.class_num)
Z
ZPaC 已提交
98 99
    if args_opt.parameter_server:
        net.set_param_ps()
100 101 102 103 104 105 106 107 108

    # init weight
    if args_opt.pre_trained:
        param_dict = load_checkpoint(args_opt.pre_trained)
        load_param_into_net(net, param_dict)
    else:
        for _, cell in net.cells_and_names():
            if isinstance(cell, nn.Conv2d):
                cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
W
z  
Wei Luning 已提交
109 110
                                                                    cell.weight.shape,
                                                                    cell.weight.dtype)
111 112
            if isinstance(cell, nn.Dense):
                cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
W
z  
Wei Luning 已提交
113 114
                                                                    cell.weight.shape,
                                                                    cell.weight.dtype)
115 116 117 118 119 120 121 122 123 124 125

    # init lr
    if args_opt.net == "resnet50":
        if args_opt.dataset == "cifar10":
            lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
                        warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
                        lr_decay_mode='poly')
        else:
            lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
                        total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine')
    else:
R
RobinGrosman 已提交
126
        lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, config.epoch_size,
127 128 129 130
                                        config.pretrain_epoch_size * step_size)
    lr = Tensor(lr)

    # define opt
W
z  
Wei Luning 已提交
131 132 133 134 135 136 137 138
    decayed_params = []
    no_decayed_params = []
    for param in net.trainable_params():
        if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
            decayed_params.append(param)
        else:
            no_decayed_params.append(param)

139 140
    group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
                    {'params': no_decayed_params},
G
guoqi 已提交
141
                    {'order_params': net.trainable_params()}]
142
    opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
143 144 145 146 147
    # define loss, model
    if target == "Ascend":
        if args_opt.dataset == "imagenet2012":
            if not config.use_label_smooth:
                config.label_smooth_factor = 0.0
148 149
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
                                                 smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
150 151 152 153 154 155 156
        else:
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
        loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
        model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
                      amp_level="O2", keep_batchnorm_fp32=False)
    else:
        # GPU target
V
VectorSL 已提交
157 158 159 160 161 162 163 164
        if args_opt.dataset == "imagenet2012":
            if not config.use_label_smooth:
                config.label_smooth_factor = 0.0
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
                                                 smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
        else:
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
                                                 num_classes=config.class_num)
P
panfengfeng 已提交
165 166 167 168 169 170 171 172 173 174 175 176

        if args_opt.net == "resnet101":
            opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
                           config.loss_scale)
            loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
            # Mixed precision
            model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
                          amp_level="O2", keep_batchnorm_fp32=True)
        else:
            ## fp32 training
            opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay)
            model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
177 178 179 180 181 182 183 184 185 186 187 188

    # define callbacks
    time_cb = TimeMonitor(data_size=step_size)
    loss_cb = LossMonitor()
    cb = [time_cb, loss_cb]
    if config.save_checkpoint:
        config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
                                     keep_checkpoint_max=config.keep_checkpoint_max)
        ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
        cb += [ckpt_cb]

    # train model
189 190
    model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
                dataset_sink_mode=(not args_opt.parameter_server))