train.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import os
import random
import argparse
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore import dataset as de
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from src.lr_generator import get_lr, warmup_cosine_annealing_lr

parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet50 or resnet101')
parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')

parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
args_opt = parser.parse_args()

random.seed(1)
np.random.seed(1)
de.config.set_seed(1)

if args_opt.net == "resnet50":
    from src.resnet import resnet50 as resnet

    if args_opt.dataset == "cifar10":
        from src.config import config1 as config
        from src.dataset import create_dataset1 as create_dataset
    else:
        from src.config import config2 as config
        from src.dataset import create_dataset2 as create_dataset
else:
    from src.resnet import resnet101 as resnet
    from src.config import config3 as config
    from src.dataset import create_dataset3 as create_dataset

if __name__ == '__main__':
    target = args_opt.device_target
    ckpt_save_dir = config.save_checkpoint_path

    # init context
    context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
    if args_opt.run_distribute:
        if target == "Ascend":
            device_id = int(os.getenv('DEVICE_ID'))
            context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
            context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
                                              mirror_mean=True)
            if args_opt.net == "resnet50":
77
                auto_parallel_context().set_all_reduce_fusion_split_indices([85, 160])
78 79 80 81 82 83 84 85 86 87 88 89
            else:
                auto_parallel_context().set_all_reduce_fusion_split_indices([180, 313])
            init()
        # GPU target
        else:
            init("nccl")
            context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
                                              mirror_mean=True)
            ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"

    # create dataset
    if args_opt.net == "resnet50":
90
        dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
91 92
                                 batch_size=config.batch_size, target=target)
    else:
93
        dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
                                 batch_size=config.batch_size)
    step_size = dataset.get_dataset_size()

    # define net
    net = resnet(class_num=config.class_num)

    # init weight
    if args_opt.pre_trained:
        param_dict = load_checkpoint(args_opt.pre_trained)
        load_param_into_net(net, param_dict)
    else:
        for _, cell in net.cells_and_names():
            if isinstance(cell, nn.Conv2d):
                cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
                                                                    cell.weight.default_input.shape,
                                                                    cell.weight.default_input.dtype).to_tensor()
            if isinstance(cell, nn.Dense):
                cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
                                                                    cell.weight.default_input.shape,
                                                                    cell.weight.default_input.dtype).to_tensor()

    # init lr
    if args_opt.net == "resnet50":
        if args_opt.dataset == "cifar10":
            lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
                        warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
                        lr_decay_mode='poly')
        else:
            lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
                        total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine')
    else:
        lr = warmup_cosine_annealing_lr(config.lr, step_size, config.warmup_epochs, 120,
                                        config.pretrain_epoch_size * step_size)
    lr = Tensor(lr)

    # define opt
130 131 132 133 134 135
    decayed_params = list(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'bias' not in x.name, net.trainalbe_params()))
    no_decayed_params = [param for param in net.trainalbe_params() if param not in decayed_params]
    group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
                    {'params': no_decayed_params},
                    {'order_params': net.trainalbe_params()}]
    opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
136 137 138 139 140
    # define loss, model
    if target == "Ascend":
        if args_opt.dataset == "imagenet2012":
            if not config.use_label_smooth:
                config.label_smooth_factor = 0.0
141 142
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
                                                 smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        else:
            loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
        loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
        model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
                      amp_level="O2", keep_batchnorm_fp32=False)
    else:
        # GPU target
        loss = SoftmaxCrossEntropyWithLogits(sparse=True, is_grad=False, reduction='mean')
        opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum)
        model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})

    # define callbacks
    time_cb = TimeMonitor(data_size=step_size)
    loss_cb = LossMonitor()
    cb = [time_cb, loss_cb]
    if config.save_checkpoint:
        config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
                                     keep_checkpoint_max=config.keep_checkpoint_max)
        ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
        cb += [ckpt_cb]

    # train model
    model.train(config.epoch_size, dataset, callbacks=cb)