matmul_op.cc 35.9 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
Y
Yu Yang 已提交
13
#include <utility>
14
#include <vector>
15

Y
Yu Yang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
22 23 24

namespace paddle {
namespace operators {
25 26 27 28

/**
 * Printing shape information into a string is easy to use.
 */
29
inline static std::string DumpMatrixShape(
30
    const phi::funcs::MatDescriptor &desc) {
31 32 33 34 35 36
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
37 38 39 40
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
41
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
42 43 44
  if (x_dim.size() > 1) {
    return x_dim;
  }
45
  return phi::make_ddim({1, x_dim[0]});
Y
Yu Yang 已提交
46 47 48 49 50 51
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
52
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
53 54 55
  if (y_dim.size() > 1) {
    return y_dim;
  }
56
  return phi::make_ddim({y_dim[0], 1});
Y
Yu Yang 已提交
57 58 59 60 61
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
62
  void Compute(const framework::ExecutionContext &context) const override {
63 64 65 66
    auto &x = GET_DATA_SAFELY(
        context.Input<framework::Tensor>("X"), "Input", "X", "MatMul");
    auto &y = GET_DATA_SAFELY(
        context.Input<framework::Tensor>("Y"), "Input", "Y", "MatMul");
Y
yuyang18 已提交
67
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
68 69
    out->mutable_data<T>(context.GetPlace());

70 71
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
72
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
73
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
74
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
75
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
76

77
    int head_number = 1;
78 79
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
80 81 82 83 84 85 86 87 88 89 90 91
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
92 93
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
94 95 96
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
97 98 99 100 101 102 103 104 105
      blas.MatMulWithHead(x,
                          mat_dim_a,
                          y,
                          mat_dim_b,
                          scale,
                          head_number,
                          out,
                          T(0),
                          split_vertical_y);
106 107
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
108 109
    }
#else
S
sneaxiy 已提交
110
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
111
#endif
Y
Yu Yang 已提交
112 113 114 115 116
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
117
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126 127 128 129
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
130 131
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
132 133 134 135 136 137 138 139
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
140
  phi::funcs::Transpose<DeviceContext, T, 3> trans;
Y
Yu Yang 已提交
141 142
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
143

Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152 153
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
154
    framework::Tensor *x, const phi::funcs::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
182 183
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
184 185
                                           framework::Tensor *out,
                                           bool trans_x,
Y
Yu Yang 已提交
186 187 188
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
189 190
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
Y
Yu Yang 已提交
191 192 193 194
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
195 196
                 mat_dim_x.height_,
                 mat_dim_y.width_});
Y
Yu Yang 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
231
  void MatMul(const framework::ExecutionContext &context,
232 233 234 235
              const framework::Tensor &a,
              bool trans_a,
              const framework::Tensor &b,
              bool trans_b,
Y
yuyang18 已提交
236
              framework::Tensor *out) const {
Y
Yu Yang 已提交
237
    out->mutable_data<T>(context.GetPlace());
238 239 240
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
241 242

    int head_number = 1;
243 244
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
245 246 247
    if (context.HasAttr("head_number")) {
      head_number = context.Attr<int>("head_number");
    }
248 249 250 251 252 253 254 255 256
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
257 258 259 260 261 262 263
    blas.MatMul(a,
                mat_dim_a,
                b,
                mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")),
                out,
                T(0));
Y
Yu Yang 已提交
264 265
  }

Y
yuyang18 已提交
266
  void CalcInputGrad(const framework::ExecutionContext &context,
267 268 269 270 271 272
                     const framework::Tensor &a,
                     bool trans_a,
                     bool is_fold_init_dims_a,
                     const framework::Tensor &b,
                     bool trans_b,
                     bool is_fold_init_dims_b,
Y
yuyang18 已提交
273
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
274 275 276 277 278 279
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
280
      auto &ctx = context.template device_context<DeviceContext>();
281 282 283 284 285 286 287
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
288 289
          trans_b,
          out);
Y
Yu Yang 已提交
290 291 292
    }
  }

Y
yuyang18 已提交
293
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
294 295 296 297
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
298 299
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
346

347 348 349 350 351 352
framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
                               std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);
353

354 355
  PADDLE_ENFORCE_GT(dim.size(),
                    0,
356 357 358 359
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));
360

361 362 363 364 365 366
  if (!shape.empty() && !axis.empty()) {
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

367 368 369 370
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
371 372 373 374 375
              const framework::Tensor &a,
              bool trans_a,
              const framework::Tensor &b,
              bool trans_b,
              bool flag,
376 377
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
378 379 380
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
381 382

    int head_number = 1;
383 384
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
385 386 387 388 389 390 391 392 393 394
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
395 396 397 398 399 400
    blas.MatMul(a,
                mat_dim_a,
                b,
                mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")),
                out,
401 402 403 404
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
405 406 407 408 409 410 411
                     const framework::Tensor &a,
                     bool trans_a,
                     bool is_fold_init_dims_a,
                     const framework::Tensor &b,
                     bool trans_b,
                     bool is_fold_init_dims_b,
                     bool flag,
412 413 414 415 416 417 418 419
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
420 421 422 423 424 425 426
      MatMul(
          context,
          is_fold_init_dims_a ? FoldInitDims(a)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
          trans_a,
          is_fold_init_dims_b ? FoldInitDims(b)
                              : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
427 428 429
          trans_b,
          flag,
          out);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout = *context.Input<framework::LoDTensor>("DOut");
    auto *ddx = context.Input<framework::LoDTensor>("DDX");
    auto *ddy = context.Input<framework::LoDTensor>("DDY");

    auto *dx = context.Output<framework::LoDTensor>("DX");
    auto *dy = context.Output<framework::LoDTensor>("DY");
    auto *ddout = context.Output<framework::LoDTensor>("DDOut");

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
482 483
          CalcInputGrad(
              context, dout, true, true, ddx_mat, true, false, false, dy);
484 485
        } else if (transpose_x) {
          // dy = ddx * dout
486 487
          CalcInputGrad(
              context, ddx_mat, false, false, dout, false, true, false, dy);
488 489
        } else if (transpose_y) {
          // dy = dout' * ddx
490 491
          CalcInputGrad(
              context, dout, true, true, ddx_mat, false, true, false, dy);
492 493
        } else {
          // dy = ddx' * dout
494 495
          CalcInputGrad(
              context, ddx_mat, true, true, dout, false, true, false, dy);
496 497 498 499
        }
      }

      if (ddout) {
500 501 502 503 504 505 506 507 508
        CalcInputGrad(context,
                      ddx_mat,
                      transpose_x,
                      true,
                      y,
                      transpose_y,
                      false,
                      ddout_flag,
                      ddout);
509 510 511 512 513 514 515 516 517 518 519 520
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
521 522
          CalcInputGrad(
              context, ddy_mat, true, true, dout, true, false, false, dx);
523 524
        } else if (transpose_x) {
          // dx = ddy * dout'
525 526
          CalcInputGrad(
              context, ddy_mat, false, false, dout, true, false, false, dx);
527 528
        } else if (transpose_y) {
          // dx = dout * ddy
529 530
          CalcInputGrad(
              context, dout, false, false, ddy_mat, false, true, false, dx);
531 532
        } else {
          // dx = dout * ddy'
533 534
          CalcInputGrad(
              context, dout, false, false, ddy_mat, true, false, false, dx);
535 536 537 538
        }
      }

      if (ddout) {
539 540 541 542 543 544 545 546 547
        CalcInputGrad(context,
                      x,
                      transpose_x,
                      true,
                      ddy_mat,
                      transpose_y,
                      false,
                      ddout_flag,
                      ddout);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
571 572 573 574 575
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
576
  void InferShape(framework::InferShapeContext *context) const override {
577 578 579
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
580

581 582
    auto dim_x = GetDimForInput(*context, "X");
    auto dim_y = GetDimForInput(*context, "Y");
583 584 585 586 587 588 589 590 591 592 593 594 595

#ifdef PADDLE_WITH_MKLDNN
    // (jczaja): For NHWC execution output shape needs
    // to be computed like instead x*y we are to do y*x
    bool channelwise_onednn =
        context->IsRunMKLDNNKernel() &&
        (platform::MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
         framework::DataLayout::kNHWC);
    if (channelwise_onednn) {
      std::swap(dim_x, dim_y);
    }
#endif

596
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
597 598
        RowMatrixFromVector(dim_x),
        0,
599
        context->Attrs().Get<bool>("transpose_X"));
600
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(
601 602
        ColumnMatrixFromVector(dim_y),
        0,
603
        context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
604

605 606 607 608 609 610 611
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
612
    if (context->IsRuntime()) {
613
      PADDLE_ENFORCE_EQ(
614 615
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
616 617 618 619 620 621 622
          true,
          platform::errors::InvalidArgument(
              "The batch size of the two matrices should be equal, or "
              "at least one is zero.\n"
              "But received X's shape: %s, Y's shape: %s.",
              DumpMatrixShape(mat_dim_x).c_str(),
              DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
623
    }
624
    int64_t dim_out_y = mat_dim_y.width_;
625 626
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
627
    int head_number = context->Attrs().Get<int>("head_number");
628
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
629 630
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
631 632
          head_number,
          mat_dim_x.width_,
633 634 635 636
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
637 638
              head_number,
              DumpMatrixShape(mat_dim_x).c_str()));
639 640 641 642

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
643
    }
644
#else
645 646
    PADDLE_ENFORCE_EQ(mat_dim_x.width_,
                      mat_dim_y.height_,
647 648
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
649
                          "but received X's shape: [%s], "
650
                          "Y's shape: [%s].",
651 652
                          dim_x,
                          dim_y));
653 654
#endif

655
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
656
    if (mat_dim_x.batch_size_ != 0) {
657
      dim_out = phi::vectorize(dim_x);
Y
Yu Yang 已提交
658
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
659
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
660
    } else if (mat_dim_y.batch_size_ != 0) {
661
      dim_out = phi::vectorize(dim_y);
Y
Yu Yang 已提交
662
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
663
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
664
    } else {
665
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
666 667
    }

Y
Yu Yang 已提交
668 669 670
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
671 672
    }

Y
Yu Yang 已提交
673 674
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
675 676
    }

Y
Yu Yang 已提交
677 678
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
679
    }
680

681
    framework::DDim ddim_out = phi::make_ddim(dim_out);
682 683

#ifdef PADDLE_WITH_MKLDNN
684 685 686 687 688
    auto shape = context->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto axis = context->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!shape.empty() && !axis.empty()) {
      ddim_out = ddim_out.transpose(axis).reshape(shape);
689 690
    }
#endif
691 692
    context->SetOutputDim("Out", ddim_out);
    context->ShareLoD("X", "Out");
M
Markus Kliegl 已提交
693
  }
694 695 696

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
697 698
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
699 700

#ifdef PADDLE_WITH_MKLDNN
701
    using dnnl::memory;
702
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
703 704
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
705 706 707 708 709 710
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
711 712

  framework::OpKernelType GetKernelTypeForVar(
713 714
      const std::string &var_name,
      const framework::Tensor &tensor,
715 716 717
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
718
      return framework::OpKernelType(
719 720
          framework::TransToProtoVarType(tensor.dtype()),
          tensor.place(),
721
          tensor.layout());
722
    } else {
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
#ifdef PADDLE_WITH_MKLDNN
      // When matmul is first oneDNN op in a chain (there was some non oneDNN op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
      if ((expected_kernel_type.data_layout_ ==
           framework::DataLayout::kMKLDNN) &&
          (tensor.layout() != framework::DataLayout::kMKLDNN) &&
          paddle::platform::MKLDNNDeviceContext::tls()
                  .get_cur_paddle_data_layout() ==
              framework::DataLayout::kNHWC) {
        return framework::OpKernelType(expected_kernel_type.data_type_,
                                       tensor.place(),
                                       framework::DataLayout::kNHWC);
      }
#endif
738 739
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), tensor.layout());
740 741
    }
  }
M
Markus Kliegl 已提交
742 743 744 745
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
746
  void Make() override {
M
Markus Kliegl 已提交
747 748 749 750 751 752 753 754 755 756 757
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
758
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
759 760 761
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
762 763
        .SetDefault(false)
        .AsExtra();
764 765
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
766 767
        .SetDefault({})
        .AsExtra();
768 769
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
770 771
        .SetDefault({})
        .AsExtra();
772 773
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
774 775
        .SetDefault({})
        .AsExtra();
776 777
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
778 779
        .SetDefault({})
        .AsExtra();
780 781 782 783
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a shape atribute of fused reshape for `Out` output.)DOC")
784 785
        .SetDefault({})
        .AsExtra();
786 787 788 789
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a axis atribute of fused transpose for `Out` output.)DOC")
790 791
        .SetDefault({})
        .AsExtra();
792 793 794 795
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
796 797
        .SetDefault(false)
        .AsExtra();
798 799 800 801
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
802 803
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
804
    /* int8 parameters */
805 806
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
807 808
        .SetDefault(1.0f)
        .AsExtra();
809 810
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
811 812
        .SetDefault(1.0f)
        .AsExtra();
813 814
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
815 816
        .SetDefault(1.0f)
        .AsExtra();
817 818 819
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
820 821
        .SetDefault(false)
        .AsExtra();
822

823 824
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
825 826 827
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
828
    AddComment(R"DOC(
K
kexinzhao 已提交
829 830
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
831 832 833 834 835 836 837 838 839 840 841 842
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.
Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
843
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
844 845
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]
M
Markus Kliegl 已提交
846 847
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
848 849
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
850
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
851
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
852
- We add `transpose_X` and `transpose_Y` flags.
853 854 855
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
856
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
857
or not. But the output only shares the LoD information with input `X`.
M
Markus Kliegl 已提交
858 859 860 861 862 863 864 865 866
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
867
  void InferShape(framework::InferShapeContext *context) const override {
868 869
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
870 871 872 873
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "matmul");
M
Markus Kliegl 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
887 888 889 890 891 892 893 894

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
895 896
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
897 898 899 900 901 902
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
M
Markus Kliegl 已提交
903 904
};

H
hong 已提交
905 906
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
907
 public:
H
hong 已提交
908
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
909 910

 protected:
911
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
912
    retv->SetType("matmul_grad");
H
hong 已提交
913 914 915 916 917 918
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
919 920
  }
};
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
976 977 978 979
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
980 981 982
REGISTER_OPERATOR(matmul,
                  ops::MatMulOp,
                  ops::MatMulOpMaker,
H
hong 已提交
983 984
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
985 986
REGISTER_OPERATOR(matmul_grad,
                  ops::MatMulOpGrad,
987 988 989
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
L
Leo Chen 已提交
990 991 992 993 994 995 996 997 998 999
REGISTER_OP_CPU_KERNEL(matmul,
                       ops::MatMulKernel<phi::CPUContext, float>,
                       ops::MatMulKernel<phi::CPUContext, double>);
REGISTER_OP_CPU_KERNEL(matmul_grad,
                       ops::MatMulGradKernel<phi::CPUContext, float>,
                       ops::MatMulGradKernel<phi::CPUContext, double>);

REGISTER_OP_CPU_KERNEL(matmul_grad_grad,
                       ops::MatMulDoubleGradKernel<phi::CPUContext, float>,
                       ops::MatMulDoubleGradKernel<phi::CPUContext, double>);
1000

1001
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
1002
REGISTER_OP_CUDA_KERNEL(
1003
    matmul,
L
Leo Chen 已提交
1004 1005 1006
    ops::MatMulKernel<phi::GPUContext, float>,
    ops::MatMulKernel<phi::GPUContext, double>,
    ops::MatMulKernel<phi::GPUContext, paddle::platform::float16>);
Y
Yu Yang 已提交
1007 1008
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
L
Leo Chen 已提交
1009 1010 1011 1012 1013 1014
    ops::MatMulGradKernel<phi::GPUContext, float>,
    ops::MatMulGradKernel<phi::GPUContext, double>,
    ops::MatMulGradKernel<phi::GPUContext, paddle::platform::float16>);
REGISTER_OP_CUDA_KERNEL(matmul_grad_grad,
                        ops::MatMulDoubleGradKernel<phi::GPUContext, float>,
                        ops::MatMulDoubleGradKernel<phi::GPUContext, double>);
Y
Yu Yang 已提交
1015
#endif
1016

1017 1018
REGISTER_OP_VERSION(matmul).AddCheckpoint(
    R"ROC(Register matmul for adding the attribute of
1019
       fused_reshape_Y)ROC",
1020 1021 1022 1023 1024 1025
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "fused_reshape_Y",
        "In order to support the function of fused the input Y "
        " and input X into the input X when "
        "using the operator of matmul, and get raw shape of input Y.",
        std::vector<int>{}));