matmul_op.cc 17.8 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Y
Yu Yang 已提交
16
#include <utility>
17
#include <vector>
Y
Yu Yang 已提交
18 19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"
M
Markus Kliegl 已提交
21 22 23

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
24 25 26 27
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
28
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
29 30 31 32 33 34 35 36 37 38
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
39
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
49 50
  void Compute(const framework::ExecutionContext &context) const override {
    auto &x =
Y
Yu Yang 已提交
51
        detail::Ref(context.Input<framework::Tensor>("X"), "Cannot find X");
Y
yuyang18 已提交
52
    auto &y =
Y
Yu Yang 已提交
53
        detail::Ref(context.Input<framework::Tensor>("Y"), "Cannot find Y");
Y
yuyang18 已提交
54
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
55 56 57 58 59 60 61
    out->mutable_data<T>(context.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
    auto mat_dim_b = math::CreateMatrixDescriptor(
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
62
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
63 64 65

#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    int head_number = context.Attr<int>("head_number");
66 67 68
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
69
      blas.MatMulWithHead(x, mat_dim_a, y, mat_dim_b, scale, head_number, out,
70 71 72
                          T(0), split_vertical_y);
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
73 74
    }
#else
S
sneaxiy 已提交
75
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
76
#endif
Y
Yu Yang 已提交
77 78 79 80 81
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
82
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
83 84 85 86 87 88 89 90 91 92 93 94
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
95 96
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
97 98 99 100 101 102 103 104 105 106 107
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
108

Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117 118
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
Y
yuyang18 已提交
119
    framework::Tensor *x, const math::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
147 148 149
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
194 195 196 197
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
198 199 200 201
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
S
sneaxiy 已提交
202
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
S
sneaxiy 已提交
203
                static_cast<T>(context.Attr<float>("alpha")), out, T(0));
Y
Yu Yang 已提交
204 205
  }

Y
yuyang18 已提交
206 207 208
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
209
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
210
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
211 212 213 214 215 216
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
217
      auto &ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
218 219 220 221 222 223 224 225 226 227
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

Y
yuyang18 已提交
228
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
229 230 231 232
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
233 234
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
281 282 283 284 285 286

class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
287
  void InferShape(framework::InferShapeContext *context) const override {
M
Markus Kliegl 已提交
288 289 290 291 292 293 294 295 296 297
    PADDLE_ENFORCE(context->HasInput("X"),
                   "Input(X) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasInput("Y"),
                   "Input(Y) of MatMulOp should not be null.");
    PADDLE_ENFORCE(context->HasOutput("Out"),
                   "Output(Out) of MatMulOp should not be null.");

    auto dim_x = context->GetInputDim("X");
    auto dim_y = context->GetInputDim("Y");

Y
Yu Yang 已提交
298 299
    auto mat_dim_x =
        math::CreateMatrixDescriptor(RowMatrixFromVector(dim_x), 0,
Y
Yu Yang 已提交
300
                                     context->Attrs().Get<bool>("transpose_X"));
Y
Yu Yang 已提交
301 302
    auto mat_dim_y =
        math::CreateMatrixDescriptor(ColumnMatrixFromVector(dim_y), 0,
Y
Yu Yang 已提交
303
                                     context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
304

P
phlrain 已提交
305 306 307 308
    if (context->IsRuntime()) {
      PADDLE_ENFORCE(mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
                     mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0);
    }
Y
Yu Yang 已提交
309
    std::vector<int64_t> dim_out;
310
    int64_t dim_out_y = mat_dim_y.width_;
311 312
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    int head_number = context->Attrs().Get<int>("head_number");
313
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
314
    PADDLE_ENFORCE_LE(head_number, mat_dim_x.width_);
315 316 317 318

    if (!split_vertical_y && head_number > 0) {
      dim_out_y = head_number * mat_dim_y.width_;
    }
319
#else
320
    PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_);
321 322
#endif

Y
Yu Yang 已提交
323 324 325
    if (mat_dim_x.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_x);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
326
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
327 328 329
    } else if (mat_dim_y.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_y);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
330
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
331
    } else {
332
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
333 334
    }

Y
Yu Yang 已提交
335 336 337
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
338 339
    }

Y
Yu Yang 已提交
340 341
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
342 343
    }

Y
Yu Yang 已提交
344 345
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
346 347 348 349 350 351 352 353
    }
    context->SetOutputDim("Out", framework::make_ddim(dim_out));
    context->ShareLoD("X", /*->*/ "Out");
  }
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
354
  void Make() override {
M
Markus Kliegl 已提交
355 356 357 358 359 360 361 362 363 364 365
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
366
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
367 368 369 370
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA)
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
371
    AddComment(R"DOC(
K
kexinzhao 已提交
372 373 374 375
MatMul Operator.


This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389
over the last two dimensions of the input tensors `X` and `Y`.

If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.

Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
390
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
M
Markus Kliegl 已提交
391

392 393 394
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]

M
Markus Kliegl 已提交
395 396
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
397 398
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
399
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
400
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
401
- We add `transpose_X` and `transpose_Y` flags.
402 403 404
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
405 406

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
407 408
or not. But the output only shares the LoD information with input `X`.

M
Markus Kliegl 已提交
409 410 411 412 413 414 415 416 417
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
418
  void InferShape(framework::InferShapeContext *context) const override {
M
Markus Kliegl 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    PADDLE_ENFORCE(context->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(context->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

Y
Yu Yang 已提交
438 439 440 441 442 443
class MatMulOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
Y
yuyang18 已提交
444
    auto *retv = new framework::OpDesc();
Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453 454
    retv->SetType("matmul_grad");
    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    retv->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(retv);
  }
};
M
Markus Kliegl 已提交
455 456 457 458
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
459
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
Y
Yu Yang 已提交
460
                  ops::MatMulOpGradMaker);
461
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad);
M
Markus Kliegl 已提交
462
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
463 464 465 466
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::float16>);
Q
QI JUN 已提交
467 468
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
469 470 471 472
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::float16>);
Y
Yu Yang 已提交
473 474 475

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
476 477 478 479
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
480 481
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
482 483 484 485
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
Y
Yu Yang 已提交
486
#endif