matmul_op.cc 40.2 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
Y
Yu Yang 已提交
13
#include <utility>
14
#include <vector>
Y
Yu Yang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/framework/op_version_registry.h"
17
#include "paddle/phi/kernels/funcs/blas/blas.h"
18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
21 22 23

namespace paddle {
namespace operators {
24 25 26 27

/**
 * Printing shape information into a string is easy to use.
 */
28
inline static std::string DumpMatrixShape(
29
    const phi::funcs::MatDescriptor &desc) {
30 31 32 33 34 35
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
36 37 38 39
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
40
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
41 42 43
  if (x_dim.size() > 1) {
    return x_dim;
  }
44
  return phi::make_ddim({1, x_dim[0]});
Y
Yu Yang 已提交
45 46 47 48 49 50
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
51
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
52 53 54
  if (y_dim.size() > 1) {
    return y_dim;
  }
55
  return phi::make_ddim({y_dim[0], 1});
Y
Yu Yang 已提交
56 57 58 59 60
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
61
  void Compute(const framework::ExecutionContext &context) const override {
62 63 64 65
    auto &x = GET_DATA_SAFELY(context.Input<framework::Tensor>("X"), "Input",
                              "X", "MatMul");
    auto &y = GET_DATA_SAFELY(context.Input<framework::Tensor>("Y"), "Input",
                              "Y", "MatMul");
Y
yuyang18 已提交
66
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
67 68
    out->mutable_data<T>(context.GetPlace());

69 70
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
71
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
72
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(
Y
Yu Yang 已提交
73
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
74
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
75

76
    int head_number = 1;
77 78
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
79 80 81 82 83 84 85 86 87 88 89 90
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
91 92
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
93 94 95
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
96
      blas.MatMulWithHead(x, mat_dim_a, y, mat_dim_b, scale, head_number, out,
97 98 99
                          T(0), split_vertical_y);
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
100 101
    }
#else
S
sneaxiy 已提交
102
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
103
#endif
Y
Yu Yang 已提交
104 105 106 107 108
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
109
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
110 111 112 113 114 115 116 117 118 119 120 121
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
122 123
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
124 125 126 127 128 129 130 131
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
132
  phi::funcs::Transpose<DeviceContext, T, 3> trans;
Y
Yu Yang 已提交
133 134
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
135

Y
Yu Yang 已提交
136 137 138 139 140 141 142 143 144 145
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
146
    framework::Tensor *x, const phi::funcs::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
174 175 176
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
177 178 179
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
180 181
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
221 222 223 224
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
225
    out->mutable_data<T>(context.GetPlace());
226 227 228
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
229 230

    int head_number = 1;
231 232
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
233 234 235
    if (context.HasAttr("head_number")) {
      head_number = context.Attr<int>("head_number");
    }
236 237 238 239 240 241 242 243 244
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
S
sneaxiy 已提交
245
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
S
sneaxiy 已提交
246
                static_cast<T>(context.Attr<float>("alpha")), out, T(0));
Y
Yu Yang 已提交
247 248
  }

Y
yuyang18 已提交
249 250 251
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
252
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
253
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
254 255 256 257 258 259
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
260
      auto &ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
261 262 263 264 265 266 267 268 269 270
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

Y
yuyang18 已提交
271
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
272 273 274 275
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
276 277
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
324

325 326 327 328 329 330
framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
                               std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);
331 332 333 334 335 336

  PADDLE_ENFORCE_GT(dim.size(), 0,
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));
337 338

  // if mkldnn reshape+transpose+matmul fuse activated
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  if (!shape.empty() && !axis.empty()) {
    PADDLE_ENFORCE_GE(
        shape.size(), 2,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_LE(
        shape.size(), 4,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_EQ(
        shape.size(), axis.size(),
        platform::errors::InvalidArgument(
            "Ranks of shape_%s and axis_%s attributes of MatMulOp "
            "must be equal.",
            input_name, input_name));
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    int num_negative = std::count(shape.begin(), shape.end(), -1);
    PADDLE_ENFORCE_LE(num_negative, 1,
                      platform::errors::InvalidArgument(
                          "The max number of -1 in fused_reshape_%s is 1 "
                          "but received %d.",
                          input_name, num_negative));

    auto it_zero = std::find(shape.begin(), shape.end(), 0);
    if (it_zero != shape.end()) {
      for (uint64_t i = 0; i < shape.size(); i++) {
        if (shape[i] == 0) {
          PADDLE_ENFORCE_LT(i, dim.size(),
                            platform::errors::InvalidArgument(
                                "The index of 0 in fused_reshape_%s ",
                                "should be less than output dim size, ",
                                "but the index is %d and output dim size is %d",
                                input_name, i, dim.size()));
          shape[i] = dim.at(i);
        }
      }
    }

    // if "-1" is present then one of reshape dims must be infered
    auto it_negative = std::find(shape.begin(), shape.end(), -1);
    if (it_negative != shape.end()) {
      int64_t dim_product = 1;
      for (int i = 0; i < dim.size(); i++) {
        dim_product *= dim.at(i);
      }

      int64_t shape_product = std::accumulate(shape.begin(), shape.end(), -1,
                                              std::multiplies<int>());
      int index = std::distance(shape.begin(), it_negative);
      shape[index] = dim_product / shape_product;
    }

395 396 397 398 399
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

400 401 402 403 404 405 406 407
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b, bool flag,
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
408 409 410
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b.dims(), 0, trans_b);
411 412

    int head_number = 1;
413 414
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")), out,
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
                     bool trans_b, bool is_fold_init_dims_b, bool flag,
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, flag, out);
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout = *context.Input<framework::LoDTensor>("DOut");
    auto *ddx = context.Input<framework::LoDTensor>("DDX");
    auto *ddy = context.Input<framework::LoDTensor>("DDY");

    auto *dx = context.Output<framework::LoDTensor>("DX");
    auto *dy = context.Output<framework::LoDTensor>("DY");
    auto *ddout = context.Output<framework::LoDTensor>("DDOut");

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
          CalcInputGrad(context, dout, true, true, ddx_mat, true, false, false,
                        dy);
        } else if (transpose_x) {
          // dy = ddx * dout
          CalcInputGrad(context, ddx_mat, false, false, dout, false, true,
                        false, dy);
        } else if (transpose_y) {
          // dy = dout' * ddx
          CalcInputGrad(context, dout, true, true, ddx_mat, false, true, false,
                        dy);
        } else {
          // dy = ddx' * dout
          CalcInputGrad(context, ddx_mat, true, true, dout, false, true, false,
                        dy);
        }
      }

      if (ddout) {
        CalcInputGrad(context, ddx_mat, transpose_x, true, y, transpose_y,
                      false, ddout_flag, ddout);
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
          CalcInputGrad(context, ddy_mat, true, true, dout, true, false, false,
                        dx);
        } else if (transpose_x) {
          // dx = ddy * dout'
          CalcInputGrad(context, ddy_mat, false, false, dout, true, false,
                        false, dx);
        } else if (transpose_y) {
          // dx = dout * ddy
          CalcInputGrad(context, dout, false, false, ddy_mat, false, true,
                        false, dx);
        } else {
          // dx = dout * ddy'
          CalcInputGrad(context, dout, false, false, ddy_mat, true, false,
                        false, dx);
        }
      }

      if (ddout) {
        CalcInputGrad(context, x, transpose_x, true, ddy_mat, transpose_y,
                      false, ddout_flag, ddout);
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
576 577 578 579 580
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
581
  void InferShape(framework::InferShapeContext *context) const override {
582 583 584
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
585

586 587
    auto dim_x = GetDimForInput(*context, "X");
    auto dim_y = GetDimForInput(*context, "Y");
588 589 590 591 592 593 594 595 596 597 598 599 600

#ifdef PADDLE_WITH_MKLDNN
    // (jczaja): For NHWC execution output shape needs
    // to be computed like instead x*y we are to do y*x
    bool channelwise_onednn =
        context->IsRunMKLDNNKernel() &&
        (platform::MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
         framework::DataLayout::kNHWC);
    if (channelwise_onednn) {
      std::swap(dim_x, dim_y);
    }
#endif

601
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
602 603
        RowMatrixFromVector(dim_x), 0,
        context->Attrs().Get<bool>("transpose_X"));
604
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(
605 606
        ColumnMatrixFromVector(dim_y), 0,
        context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
607

608 609 610 611 612 613 614
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
615
    if (context->IsRuntime()) {
616
      PADDLE_ENFORCE_EQ(
617 618
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
619 620 621 622 623 624
          true, platform::errors::InvalidArgument(
                    "The batch size of the two matrices should be equal, or "
                    "at least one is zero.\n"
                    "But received X's shape: %s, Y's shape: %s.",
                    DumpMatrixShape(mat_dim_x).c_str(),
                    DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
625
    }
626
    int64_t dim_out_y = mat_dim_y.width_;
627 628
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
629
    int head_number = context->Attrs().Get<int>("head_number");
630
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
631 632 633
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
          head_number, mat_dim_x.width_,
634 635 636 637 638
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
              head_number, DumpMatrixShape(mat_dim_x).c_str()));
639 640 641 642

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
643
    }
644
#else
645 646 647
    PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_,
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
648
                          "but received X's shape: [%s], "
649 650
                          "Y's shape: [%s].",
                          dim_x, dim_y));
651 652
#endif

653
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
654
    if (mat_dim_x.batch_size_ != 0) {
655
      dim_out = phi::vectorize(dim_x);
Y
Yu Yang 已提交
656
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
657
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
658
    } else if (mat_dim_y.batch_size_ != 0) {
659
      dim_out = phi::vectorize(dim_y);
Y
Yu Yang 已提交
660
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
661
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
662
    } else {
663
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
664 665
    }

Y
Yu Yang 已提交
666 667 668
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
669 670
    }

Y
Yu Yang 已提交
671 672
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
673 674
    }

Y
Yu Yang 已提交
675 676
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
677
    }
678

679
    framework::DDim ddim_out = phi::make_ddim(dim_out);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

#ifdef PADDLE_WITH_MKLDNN
    //  if mkldnn matmul+transpose+reshape fuse activated
    auto reshape_out =
        context->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto transpose_out =
        context->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!reshape_out.empty() && !transpose_out.empty()) {
      auto reshape_out_size = reshape_out.size();
      auto transpose_out_size = transpose_out.size();
      PADDLE_ENFORCE_EQ(transpose_out_size, 4,
                        platform::errors::InvalidArgument(
                            "transpose_out supported rank is 4, "
                            "received %d",
                            transpose_out_size));
      const std::vector<int> supported_axis{0, 2, 1, 3};
      const bool supported_transpose_axis = std::equal(
          transpose_out.begin(), transpose_out.end(), supported_axis.begin());
      PADDLE_ENFORCE_EQ(
          supported_transpose_axis, true,
          platform::errors::InvalidArgument(
              "supported transpose axis for the fuse are {0, 2, 1, 3}"));
      PADDLE_ENFORCE_EQ(
          reshape_out_size, 3,
          platform::errors::InvalidArgument("reshape_out supported rank is 3, "
                                            "received %d",
                                            reshape_out_size));
708

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
      // int num_negative = std::count(reshape_out.begin(), reshape_out.end(),
      // -1);
      // PADDLE_ENFORCE_LE(num_negative, 1,
      //                   platform::errors::InvalidArgument(
      //                       "The max number of -1 in fused_reshape_Out is 1 "
      //                       "but received %d.",
      //                       num_negative));

      // auto it_zero = std::find(reshape_out.begin(), reshape_out.end(), 0);
      // if (it_zero != reshape_out.end()) {
      //   for (uint64_t i = 0; i < reshape_out.size(); i++) {
      //     if (reshape_out[i] == 0) {
      //       PADDLE_ENFORCE_LT(
      //           i, ddim_out.size(),
      //           platform::errors::InvalidArgument(
      //               "The index of 0 in fused_reshape_Out ",
      //               "should be less than output dim size, ",
      //               "but the index is %d and output dim size is %d", i,
      //               ddim_out.size()));
      //       reshape_out[i] = ddim_out.at(i);
      //     }
      //   }
      // }
732 733

      // if "-1" is present then one of reshape dims must be infered
734
      auto it = std::find(reshape_out.begin(), reshape_out.end(), -1);
735 736 737
      if (it != reshape_out.end()) {
        int index = std::distance(reshape_out.begin(), it);

738
        auto ddim_out_vec = phi::vectorize(ddim_out);
739 740 741 742 743 744 745 746 747 748

        int ddim_out_product =
            std::accumulate(ddim_out_vec.begin(), ddim_out_vec.end(), 1,
                            std::multiplies<int>());
        int reshape_out_product = std::accumulate(
            reshape_out.begin(), reshape_out.end(), -1, std::multiplies<int>());

        reshape_out[index] = ddim_out_product / reshape_out_product;
      }

749 750 751 752 753 754 755 756 757
      framework::DDim shape_out =
          ddim_out.transpose(transpose_out).reshape(reshape_out);
      context->SetOutputDim("Out", shape_out);
    } else {
      context->SetOutputDim("Out", ddim_out);
    }
#else
    context->SetOutputDim("Out", ddim_out);
#endif
M
Markus Kliegl 已提交
758 759
    context->ShareLoD("X", /*->*/ "Out");
  }
760 761 762

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
763 764
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
765 766

#ifdef PADDLE_WITH_MKLDNN
767
    using dnnl::memory;
768
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
769 770 771 772 773 774 775
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
776 777 778 779 780 781

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
782 783 784
      return framework::OpKernelType(
          framework::TransToProtoVarType(tensor.dtype()), tensor.place(),
          tensor.layout());
785
    } else {
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
#ifdef PADDLE_WITH_MKLDNN
      // When matmul is first oneDNN op in a chain (there was some non oneDNN op
      // previously)
      // then we also need to rotate shape NHWC -> NCWH
      if ((expected_kernel_type.data_layout_ ==
           framework::DataLayout::kMKLDNN) &&
          (tensor.layout() != framework::DataLayout::kMKLDNN) &&
          paddle::platform::MKLDNNDeviceContext::tls()
                  .get_cur_paddle_data_layout() ==
              framework::DataLayout::kNHWC) {
        return framework::OpKernelType(expected_kernel_type.data_type_,
                                       tensor.place(),
                                       framework::DataLayout::kNHWC);
      }
#endif
801 802 803 804
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
M
Markus Kliegl 已提交
805 806 807 808
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
809
  void Make() override {
M
Markus Kliegl 已提交
810 811 812 813 814 815 816 817 818 819 820
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
821
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
822 823 824
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
825 826
        .SetDefault(false)
        .AsExtra();
827 828
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
829 830
        .SetDefault({})
        .AsExtra();
831 832
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
833 834
        .SetDefault({})
        .AsExtra();
835 836
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
837 838
        .SetDefault({})
        .AsExtra();
839 840
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
841 842
        .SetDefault({})
        .AsExtra();
843 844 845 846
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a shape atribute of fused reshape for `Out` output.)DOC")
847 848
        .SetDefault({})
        .AsExtra();
849 850 851 852
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a axis atribute of fused transpose for `Out` output.)DOC")
853 854
        .SetDefault({})
        .AsExtra();
855 856 857 858
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
859 860
        .SetDefault(false)
        .AsExtra();
861 862 863 864
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
865 866
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
867
    /* int8 parameters */
868 869
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
870 871
        .SetDefault(1.0f)
        .AsExtra();
872 873
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
874 875
        .SetDefault(1.0f)
        .AsExtra();
876 877
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
878 879
        .SetDefault(1.0f)
        .AsExtra();
880 881 882
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
883 884
        .SetDefault(false)
        .AsExtra();
885

886 887
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
888 889 890
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
891
    AddComment(R"DOC(
K
kexinzhao 已提交
892 893
MatMul Operator.
This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
894 895 896 897 898 899 900 901 902 903 904 905
over the last two dimensions of the input tensors `X` and `Y`.
If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.
Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
906
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
907 908
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]
M
Markus Kliegl 已提交
909 910
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
911 912
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
913
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
914
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
915
- We add `transpose_X` and `transpose_Y` flags.
916 917 918
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
919
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
920
or not. But the output only shares the LoD information with input `X`.
M
Markus Kliegl 已提交
921 922 923 924 925 926 927 928 929
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
930
  void InferShape(framework::InferShapeContext *context) const override {
931 932 933 934
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "matmul");
M
Markus Kliegl 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
M
Markus Kliegl 已提交
963 964
};

H
hong 已提交
965 966
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
967
 public:
H
hong 已提交
968
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
969 970

 protected:
971
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
972
    retv->SetType("matmul_grad");
H
hong 已提交
973 974 975 976 977 978
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
979 980
  }
};
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
1036 1037 1038 1039
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
1040
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
H
hong 已提交
1041 1042
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
1043 1044 1045 1046
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad,
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
M
Markus Kliegl 已提交
1047
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
1048
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
1049
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
1050 1051
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
1052
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
1053
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>);
Y
Yu Yang 已提交
1054

1055 1056 1057 1058 1059
REGISTER_OP_CPU_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);

1060
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
1061
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
1062 1063 1064 1065
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
1066 1067
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
1068 1069 1070 1071
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
1072 1073 1074 1075
REGISTER_OP_CUDA_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, double>);
Y
Yu Yang 已提交
1076
#endif
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

REGISTER_OP_VERSION(matmul)
    .AddCheckpoint(
        R"ROC(Register matmul for adding the attribute of
       fused_reshape_Y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "fused_reshape_Y",
            "In order to support the function of fused the input Y "
            " and input X into the input X when "
            "using the operator of matmul, and get raw shape of input Y.",
            std::vector<int>{}));