pooling.py 86.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
19
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
21 22 23
from paddle.fluid import core
from paddle.fluid.framework import _in_legacy_dygraph, Variable
from paddle.fluid.framework import in_dygraph_mode, _non_static_mode
24

25 26
__all__ = []

27

28 29 30 31 32
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
33
    if len(x.shape) != dimension:
34 35 36
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
37 38


39
def _check_instance(x, x_name, types=(int, float)):
40 41

    if not isinstance(x, types):
42 43 44
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
                types, x_name, type(x)))
45 46


D
Double_V 已提交
47
def _check_value_limitation(x, x_name, min_limit=1e-3):
48

D
Double_V 已提交
49 50 51
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
52 53
                "Excepted the input {} to be greater than {} but received x: {}. "
                .format(x_name, min_limit, x))
D
Double_V 已提交
54 55 56 57 58

    for ele in x:
        _check_value(ele, x_name)


59 60 61
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
62
    else:
63
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
64 65


66 67 68 69
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
70 71


72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
94 95


96 97 98 99 100 101 102 103 104
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
105
                raise ValueError(
106 107 108 109 110 111 112 113 114 115 116 117 118 119
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
120
                raise ValueError(
121 122 123
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
124 125
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
141
    else:
142 143 144 145
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

146

147 148 149 150 151 152 153 154
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
155 156
            "The size of padding's dimmention should be 1 or 2. But got padding={}"
            .format(padding))
157 158 159 160 161 162 163
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
164
               exclusive=True,
165 166
               ceil_mode=False,
               name=None):
D
Double_V 已提交
167
    """
168 169
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
170 171 172 173

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
174
                          `L` is the length of the feature. The data type is float32 or float64.
175
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
176
            it must contain an integer.
177
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
178 179 180 181 182 183 184 185
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
186
        exclusive (bool): Whether to exclude padding points in average pooling
187
                          mode, default is `True`.
188
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
189
            If it is set to False, the floor function will be used. The default value is False.
190 191 192 193 194 195 196 197
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
198

C
Chen Long 已提交
199
            import paddle
200
            import paddle.nn as nn
C
Chen Long 已提交
201

202 203 204 205
            data = paddle.uniform([1, 3, 32], paddle.float32)
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
206 207 208
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
209
    if not in_dynamic_mode():
210
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
211
    _check_input(x, 3)
212
    x = unsqueeze(x, [2])
213
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
214 215 216 217 218 219 220
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
221 222 223
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

224
    channel_last = _channel_last("NCL", 1)
225 226 227 228
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
229

230 231
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
232

233 234 235 236 237 238 239
    if in_dygraph_mode():
        output = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                               exclusive, data_format, 'avg', False, False,
                               padding_algorithm, True)
        return squeeze(output, [2])

    if _in_legacy_dygraph():
240 241 242 243 244 245 246
        output = _legacy_C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                      kernel_size, 'global_pooling', False,
                                      'strides', stride, 'paddings', padding,
                                      'padding_algorithm', padding_algorithm,
                                      'use_cudnn', True, 'ceil_mode', ceil_mode,
                                      'use_mkldnn', False, 'exclusive',
                                      exclusive, 'data_format', data_format)
247 248 249 250
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
251
    dtype = helper.input_dtype(input_param_name='x')
252 253
    pool_out = helper.create_variable_for_type_inference(dtype)

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
270 271 272 273

    return squeeze(pool_out, [2])


274
def avg_pool2d(x,
275 276 277 278
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
279
               exclusive=True,
280 281
               divisor_override=None,
               data_format="NCHW",
282 283
               name=None):
    """
284 285
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
286

287
    Args:
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
308
        exclusive (bool): Whether to exclude padding points in average pooling
309 310 311 312 313
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
314 315 316
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
317

318 319
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
320

321 322
    Examples:
        .. code-block:: python
323

C
Chen Long 已提交
324 325
            import paddle
            import paddle.nn.functional as F
326

C
Chen Long 已提交
327
            # avg pool2d
328
            x = paddle.uniform([1, 3, 32, 32], paddle.float32)
C
Chen Long 已提交
329 330 331 332
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
333
    """
334
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
335 336 337
    if stride is None:
        stride = kernel_size
    else:
338
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
339

D
Double_V 已提交
340 341 342
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

343
    channel_last = _channel_last(data_format, 2)
344 345 346 347
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    2,
                                                    channel_last,
                                                    ceil_mode=ceil_mode)
348

349
    if _non_static_mode():
F
From00 已提交
350
        if in_dygraph_mode():
351 352
            output = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                   exclusive, data_format, 'avg', False, False,
353
                                   padding_algorithm, True)
F
From00 已提交
354
        else:
355 356 357 358 359 360
            output = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'avg', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive',
                exclusive, 'data_format', data_format)
361 362 363 364 365
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
366

367
    op_type = 'pool2d'
368
    helper = LayerHelper(op_type, **locals())
369
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
370
    dtype = helper.input_dtype(input_param_name='x')
371 372
    pool_out = helper.create_variable_for_type_inference(dtype)

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": "avg",
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
389

390 391 392 393 394
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
395 396


397 398 399 400 401
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
402
               exclusive=True,
403 404 405
               divisor_override=None,
               data_format="NCDHW",
               name=None):
406
    """
407 408
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
409 410

    Args:
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
429
        exclusive (bool): Whether to exclude padding points in average pooling
430 431 432 433 434
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
435
        name(str, optional): For detailed information, please refer
436 437
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
438

439
    Returns:
440
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
441

442 443
    Examples:
        .. code-block:: python
444

445
          import paddle
C
Chen Long 已提交
446

447
          x = paddle.uniform([1, 3, 32, 32, 32], paddle.float32)
448 449 450 451 452 453 454
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
455
    """
456 457 458 459 460
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
461

462
    channel_last = _channel_last(data_format, 3)
463 464 465 466
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
467

D
Double_V 已提交
468 469 470
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    if in_dygraph_mode():
        pool_out = _C_ops.pool3d(x, kernel_size, stride, padding, ceil_mode,
                                 exclusive, data_format, 'avg', False, False,
                                 padding_algorithm, True)
    elif _in_legacy_dygraph():
        pool_out = _legacy_C_ops.pool3d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
            data_format)
    else:
        op_type = "pool3d"
        helper = LayerHelper(op_type, **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
        dtype = helper.input_dtype(input_param_name='x')
        pool_out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": pool_out}

        helper.append_op(type=op_type,
                         inputs={"X": x},
                         outputs=outputs,
                         attrs={
                             "pooling_type": 'avg',
                             "ksize": kernel_size,
                             "global_pooling": False,
                             "strides": stride,
                             "paddings": padding,
                             "padding_algorithm": padding_algorithm,
                             "use_cudnn": True,
                             "ceil_mode": ceil_mode,
                             "use_mkldnn": False,
                             "exclusive": exclusive,
                             "data_format": data_format,
                         })
506

507 508 509 510 511 512
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
513 514


515
def max_pool1d(x,
516 517 518
               kernel_size,
               stride=None,
               padding=0,
519
               return_mask=False,
520 521 522
               ceil_mode=False,
               name=None):
    """
523 524
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
525 526

    Args:
527 528 529
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
530
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
531
            it must contain an integer.
532
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
533 534 535 536 537 538 539 540
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
541
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
542 543
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
544 545 546 547 548
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
549

550 551 552
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
553
        ShapeError: If the input is not a 3-D tensor.
554
        ShapeError: If the output's shape calculated is not greater than 0.
555

556 557
    Examples:
        .. code-block:: python
558

559 560
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
561

562
          data = paddle.uniform([1, 3, 32], paddle.float32)
563 564
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
565
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
566
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
567
    """
568 569
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
570
    if not in_dynamic_mode():
571
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
572 573 574
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
575 576 577
    if stride is None:
        stride = kernel_size
    else:
578
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
579

580 581 582
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    ceil_mode=ceil_mode)
583

584 585
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
586

F
From00 已提交
587 588
    if in_dygraph_mode():
        if return_mask:
589 590
            pool_out = _C_ops.max_pool2d_with_index(x, kernel_size, stride,
                                                    padding, False, False)
F
From00 已提交
591
            return (squeeze(pool_out[0], [2]),
592 593
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
F
From00 已提交
594
        else:
595 596
            pool_out = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                     True, data_format, 'max', False, False,
597
                                     padding_algorithm, True)
F
From00 已提交
598 599 600
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
601
        if return_mask:
602
            pool_out = _legacy_C_ops.max_pool2d_with_index(
D
Double_V 已提交
603 604 605 606 607
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
608
            return (squeeze(pool_out[0], [2]),
609 610
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
D
Double_V 已提交
611
        else:
612 613 614 615 616 617
            pool_out = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
618 619
            return squeeze(pool_out, [2])

620
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
621
    helper = LayerHelper(op_type, **locals())
622
    dtype = helper.input_dtype(input_param_name='x')
623
    pool_out = helper.create_variable_for_type_inference(dtype)
624
    mask = helper.create_variable_for_type_inference('int32')
625 626
    outputs = {"Out": pool_out, "Mask": mask}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
643

644
    return (squeeze(pool_out, [2]),
645
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
646 647


648 649 650 651
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
652 653
        default_size.append((input_size[-len(kernel_size) + d] - 1) *
                            stride[d] + kernel_size[d] - 2 * padding[d])
654 655

    has_static_var = False
656 657
    if output_size is None:
        ret = default_size
658 659 660 661 662 663 664 665 666
    elif utils._contain_var(output_size):
        if not _non_static_mode():
            has_static_var = True
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            for i, var in enumerate(output_size):
                if isinstance(var, Variable):
                    output_size[i] = var.numpy()[0]
        ret = output_size
667 668 669 670 671 672 673
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                "{} or {} elements, but it has a length of '{}'".format(
674 675
                    len(kernel_size),
                    len(kernel_size) + 2, len(output_size)))
676 677 678 679 680 681 682 683
        if not has_static_var:
            for d in range(len(kernel_size)):
                min_size = default_size[d] - stride[d]
                max_size = default_size[d] + stride[d]
                if not (min_size < output_size[d] < max_size):
                    raise ValueError(
                        'invalid output_size "{}" (dim {} must be between {} and {})'
                        .format(output_size, d, min_size, max_size))
684 685 686 687 688

        ret = output_size
    return ret


689 690 691 692 693 694 695 696
def max_unpool1d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
697
    r"""
698
    This API implements max unpooling 1d opereation.
699 700
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
701 702 703 704
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
705

706 707 708 709 710 711 712 713
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
714
                          shape [N, C, L]. The format of input tensor is `"NCL"`,
715 716 717
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
718
                          shape [N, C, L]. The format of input tensor is `"NCL"` ,
719 720 721 722 723 724 725
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
726
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
727 728 729 730 731 732 733 734 735 736
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
737
        Tensor: The output tensor of unpooling result.
738 739 740

    Examples:
        .. code-block:: python
741

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
        raise ValueError("Attr(data_format) should be 'NCL'. Received "
                         "Attr(data_format): %s." % str(data_format))
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
771
    if in_dygraph_mode():
772 773
        output = _C_ops.unpool(x, indices, kernel_size, stride, padding,
                               output_size, data_format)
X
xiaoting 已提交
774 775
        return squeeze(output, [2])
    elif in_dynamic_mode():
776 777 778 779
        output = _legacy_C_ops.unpool(x, indices, 'unpooling_type', 'max',
                                      'ksize', kernel_size, 'strides', stride,
                                      'paddings', padding, "output_size",
                                      output_size, "data_format", data_format)
780 781 782 783 784 785 786
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

787 788 789 790 791 792 793 794 795 796 797 798 799
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
800 801 802
    return squeeze(unpool_out, [2])


803 804 805 806 807 808 809 810
def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
811
    r"""
812
    This API implements max unpooling 2d opereation.
813
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
814

815 816

    Args:
817
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
818
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`,
819
                          where `N` is batch size, `C` is the number of channels,
820 821
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
822
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
823
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` ,
824 825 826 827 828 829 830 831
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
832
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
833 834
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
835 836 837
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
838

839 840 841 842 843 844 845 846 847 848 849 850 851

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
852
            Tensor: The output tensor of unpooling result.
853 854 855 856

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
857

858 859 860

        Examples:
            .. code-block:: python
861

C
Chen Long 已提交
862 863
            import paddle
            import paddle.nn.functional as F
864

865
            data = paddle.rand(shape=[1,1,6,6])
866 867 868 869 870
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

871
            # specify a different output size than input size
872
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
873
            # unpool_out shape: [1, 1, 7, 7]
874

875 876
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
877 878 879 880 881 882 883 884 885 886 887 888 889
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
890
    if in_dygraph_mode():
891 892
        output = _C_ops.unpool(x, indices, kernel_size, stride, padding,
                               output_size, data_format)
893
        return output
X
xiaoting 已提交
894
    elif in_dynamic_mode():
895 896 897 898
        output = _legacy_C_ops.unpool(x, indices, 'unpooling_type', 'max',
                                      'ksize', kernel_size, 'strides', stride,
                                      'paddings', padding, "output_size",
                                      output_size, "data_format", data_format)
899 900 901 902 903 904 905
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

906 907 908 909 910 911 912 913 914 915 916 917 918
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
919 920 921
    return unpool_out


922 923 924 925 926 927 928 929
def max_unpool3d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
930
    r"""
931
    This API implements max unpooling 3d opereation.
932 933
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
934 935 936 937
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
938

939 940 941 942 943 944 945 946 947 948 949 950 951 952
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
953
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`,
954
                          where `N` is batch size, `C` is the number of channels, `D` is
955
                          the depth of the feature, `H` is the height of the feature,
956 957
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
958
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` ,
959
                          where `N` is batch size, `C` is the number of channels, `D` is
960
                          the depth of the feature, `H` is the height of the feature,
961 962 963 964 965 966
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
967
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
968 969 970 971 972 973 974 975 976 977
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
978
        Tensor: The output tensor of unpooling result.
979 980 981

    Examples:
        .. code-block:: python
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
        raise ValueError("Attr(data_format) should be 'NCDHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
1007
    if in_dygraph_mode():
1008 1009
        output = _C_ops.unpool3d(x, indices, kernel_size, stride, padding,
                                 output_size, data_format)
1010
        return output
X
xiaoting 已提交
1011
    elif in_dynamic_mode():
1012 1013 1014 1015
        output = _legacy_C_ops.unpool3d(x, indices, 'unpooling_type', 'max',
                                        'ksize', kernel_size, 'strides', stride,
                                        'paddings', padding, "output_size",
                                        output_size, "data_format", data_format)
1016 1017 1018 1019 1020 1021 1022
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
1036 1037 1038
    return unpool_out


1039 1040 1041 1042 1043 1044 1045 1046
def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
W
Wei Shengyu 已提交
1047 1048 1049
    """
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
W
Wei Shengyu 已提交
1050

W
Wei Shengyu 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

W
Wei Shengyu 已提交
1081
    Raises:
W
Wei Shengyu 已提交
1082 1083 1084 1085 1086 1087
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
W
Wei Shengyu 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

          import paddle
          import paddle.nn.functional as F

          # max pool2d
          x = paddle.uniform([1, 3, 32, 32], paddle.float32)
          out = F.max_pool2d(x, kernel_size=2, stride=2, padding=0)
          # output.shape [1, 3, 16, 16]
          # for return_mask=True
          out, max_indices = F.max_pool2d(x, kernel_size=2, stride=2, padding=0, return_mask=True)
          # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
W
Wei Shengyu 已提交
1099
    """
W
Wei Shengyu 已提交
1100

1101
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1102 1103 1104 1105 1106 1107 1108 1109 1110
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
1111 1112 1113

    channel_last = True if data_format == "NHWC" else False

1114 1115 1116 1117
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    num_dims=2,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1118

1119
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1120
        raise ValueError(
1121
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1122 1123
        )

F
From00 已提交
1124 1125
    if in_dygraph_mode():
        if return_mask:
1126 1127
            output = _C_ops.max_pool2d_with_index(x, kernel_size, stride,
                                                  padding, False, False)
F
From00 已提交
1128 1129
            return output if return_mask else output[0]
        else:
1130 1131
            return _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                 True, data_format, 'max', False, False,
1132
                                 padding_algorithm, True)
F
From00 已提交
1133 1134

    if _in_legacy_dygraph():
1135
        if return_mask:
1136
            output = _legacy_C_ops.max_pool2d_with_index(
D
Double_V 已提交
1137 1138 1139 1140 1141
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
1142
            return output if return_mask else output[0]
D
Double_V 已提交
1143
        else:
1144 1145 1146 1147 1148 1149
            output = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
1150
            return output
1151

1152
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1153
    helper = LayerHelper(op_type, **locals())
1154 1155
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
1156
    dtype = helper.input_dtype(input_param_name='x')
1157
    pool_out = helper.create_variable_for_type_inference(dtype)
1158
    mask = helper.create_variable_for_type_inference("int32")
1159
    outputs = {"Out": pool_out, "Mask": mask}
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
1177

1178
    return (pool_out, mask) if return_mask else pool_out
1179 1180 1181 1182 1183 1184


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
1185
               return_mask=False,
1186 1187 1188 1189
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
1190 1191
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
W
Wei Shengyu 已提交
1192

1193 1194
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1195
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1196
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1197
            is a tuple or list, it must contain three integers,
1198
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1199
            Otherwise, the pool kernel size will be the cube of an int.
1200 1201
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1202
            Otherwise, the pool stride size will be a cube of an int.
1203 1204 1205 1206 1207 1208 1209
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1210
        ceil_mode (bool): ${ceil_mode_comment}
1211
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1212 1213 1214 1215 1216 1217
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1218

1219 1220
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
W
Wei Shengyu 已提交
1221

1222 1223 1224 1225
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
W
Wei Shengyu 已提交
1226

1227 1228
    Examples:
        .. code-block:: python
1229

W
Wei Shengyu 已提交
1230 1231
          import paddle
          import paddle.nn.functional as F
1232

W
Wei Shengyu 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
          # max pool3d
          x = paddle.uniform([1, 3, 32, 32, 32])
          output = F.max_pool3d(x,
                                kernel_size=2,
                                stride=2, padding=0)
          # output.shape [1, 3, 16, 16, 16]
          # for return_mask=True
          x = paddle.uniform([1, 3, 32, 32, 32])
          output, max_indices = paddle.nn.functional.max_pool3d(x,
                                                                kernel_size=2,
                                                                stride=2,
                                                                padding=0,
                                                                return_mask=True)

          # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1248
    """
W
Wei Shengyu 已提交
1249

1250 1251 1252 1253 1254 1255
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1256
    channel_last = _channel_last(data_format, 3)
1257

1258 1259 1260 1261
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1262

1263
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1264
        raise ValueError(
1265
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1266 1267
        )

F
From00 已提交
1268 1269
    if in_dygraph_mode():
        if return_mask:
1270 1271
            output = _C_ops.max_pool3d_with_index(x, kernel_size, stride,
                                                  padding, False, False)
F
From00 已提交
1272 1273
            return output if return_mask else output[0]
        else:
1274 1275
            return _C_ops.pool3d(x, kernel_size, stride, padding, ceil_mode,
                                 True, data_format, 'max', False, False,
1276
                                 padding_algorithm, True)
F
From00 已提交
1277 1278

    if _in_legacy_dygraph():
1279
        if return_mask:
1280
            output = _legacy_C_ops.max_pool3d_with_index(
D
Double_V 已提交
1281 1282 1283 1284 1285
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
1286
            return output if return_mask else output[0]
D
Double_V 已提交
1287
        else:
1288 1289 1290 1291 1292 1293
            output = _legacy_C_ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
1294
            return output
1295

1296
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1297
    helper = LayerHelper(op_type, **locals())
1298
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1299
    dtype = helper.input_dtype(input_param_name='x')
1300
    pool_out = helper.create_variable_for_type_inference(dtype)
1301
    mask = helper.create_variable_for_type_inference('int32')
1302 1303
    outputs = {"Out": pool_out, "Mask": mask}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": False,
                         "data_format": data_format,
                     })
1320

1321
    return (pool_out, mask) if return_mask else pool_out
1322 1323


1324
def adaptive_avg_pool1d(x, output_size, name=None):
1325
    """
1326 1327
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`.

1328 1329
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1330

1331
    Args:
1332 1333 1334
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1335

1336
    Returns:
1337
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1338

1339 1340
    Examples:
        .. code-block:: python
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
            #
            import paddle
            import paddle.nn.functional as F

            data = paddle.uniform([1, 3, 32])
            pool_out = F.adaptive_avg_pool1d(data, output_size=16)
            # pool_out shape: [1, 3, 16])
1360 1361
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1362
    if not in_dynamic_mode():
1363 1364 1365
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1366 1367
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1368

1369
    x = unsqueeze(x, [2])
1370 1371 1372 1373 1374 1375
    if in_dygraph_mode():
        pool_out = _C_ops.pool2d(x, pool_size, [1, 1], [0, 0], False, True,
                                 "NCHW", pool_type, False, True, "EXPLICIT",
                                 False)
        return squeeze(pool_out, [2])
    if _in_legacy_dygraph():
1376 1377
        pool_out = _legacy_C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                        pool_size, 'adaptive', True)
1378
        return squeeze(pool_out, [2])
1379

1380 1381
    l_type = "pool2d"

1382
    helper = LayerHelper(l_type, **locals())
1383
    dtype = helper.input_dtype(input_param_name='x')
1384 1385
    pool_out = helper.create_variable_for_type_inference(dtype)

1386
    outputs = {"Out": pool_out}
1387 1388 1389 1390 1391 1392 1393 1394
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1395

1396
    return squeeze(pool_out, [2])
1397 1398


1399 1400
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1401 1402
    Applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
1403

1404 1405 1406 1407 1408 1409 1410
    For avg adaptive pool2d:
    ..  math::
        hstart &= floor(i * H_{in} / H_{out})
        hend &= ceil((i + 1) * H_{in} / H_{out})
        wstart &= floor(j * W_{in} / W_{out})
        wend &= ceil((j + 1) * W_{in} / W_{out})
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
1411 1412 1413

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1414
                          The data type can be float32 or float64.
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
1426

1427 1428
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1447

1448 1449 1450
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1451
            out = paddle.nn.functional.adaptive_avg_pool2d(
1452 1453
                            x = x,
                            output_size=[3, 3])
1454
            # out.shape is [2, 3, 3, 3]
1455
    """
Z
zhiboniu 已提交
1456
    if not in_dynamic_mode():
1457
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1458
                                 'adaptive_avg_pool2d')
1459
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1474
        output_size = list(output_size)
1475
        if output_size[0] is None:
1476
            output_size[0] = in_h
1477
        if output_size[1] is None:
1478 1479
            output_size[1] = in_w

1480 1481 1482 1483 1484 1485 1486 1487 1488
    if _non_static_mode():
        output_size = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in output_size
        ]
    # output_size support Variable in static mode
    elif utils._contain_var(output_size):
        output_size = utils._convert_to_tensor_list(output_size)

F
From00 已提交
1489
    if in_dygraph_mode():
1490 1491
        return _C_ops.pool2d(x, output_size, [1, 1], [0, 0], False, True,
                             data_format, 'avg', False, True, "EXPLICIT", False)
F
From00 已提交
1492 1493

    if _in_legacy_dygraph():
1494 1495 1496 1497
        return _legacy_C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                    output_size, 'global_pooling', False,
                                    'adaptive', True, 'data_format',
                                    data_format)
1498 1499 1500 1501

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1502
    dtype = helper.input_dtype(input_param_name='x')
1503 1504 1505 1506
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

1507 1508 1509 1510 1511 1512 1513 1514 1515
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1516 1517 1518 1519 1520 1521

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1522 1523
    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
    For avg adaptive pool3d:
    ..  math::
        dstart &= floor(i * D_{in} / D_{out})
        dend &= ceil((i + 1) * D_{in} / D_{out})
        hstart &= floor(j * H_{in} / H_{out})
        hend &= ceil((j + 1) * H_{in} / H_{out})
        wstart &= floor(k * W_{in} / W_{out})
        wend &= ceil((k + 1) * W_{in} / W_{out})
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
1535 1536 1537

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1538
                          The data type can be float32, float64.
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
1550

1551 1552
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1573 1574

            input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1575
            out = paddle.nn.functional.adaptive_avg_pool3d(
1576
                            x = input_data,
1577
                            output_size=[3, 3, 3])
1578
            # out.shape is [2, 3, 3, 3, 3]
1579
    """
Z
zhiboniu 已提交
1580
    if not in_dynamic_mode():
1581 1582
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1583
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1598
        output_size = list(output_size)
1599
        if output_size[0] is None:
1600
            output_size[0] = in_l
1601
        if output_size[1] is None:
1602
            output_size[1] = in_h
1603
        if output_size[2] is None:
1604 1605
            output_size[2] = in_w

1606 1607 1608 1609
    if in_dygraph_mode():
        return _C_ops.pool3d(x, output_size, [1, 1, 1], [0, 0, 0], False, True,
                             data_format, 'avg', False, True, "EXPLICIT", False)
    elif _in_legacy_dygraph():
1610 1611 1612 1613
        return _legacy_C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize',
                                    output_size, 'global_pooling', False,
                                    'adaptive', True, 'data_format',
                                    data_format)
1614 1615 1616 1617

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1618
    dtype = helper.input_dtype(input_param_name='x')
1619 1620 1621
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

1622 1623 1624 1625 1626 1627 1628 1629 1630
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1631 1632

    return pool_out
1633 1634


1635
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1636 1637 1638 1639 1640 1641 1642 1643 1644
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1645
        output_size (int): The pool kernel size. The value should be an integer.
1646
        return_mask (bool): If true, the index of max pooling point will be returned along
1647 1648 1649 1650 1651 1652 1653 1654
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1655
            ValueError: 'output_size' should be an integer.
1656 1657
    Examples:
        .. code-block:: python
1658

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
1673

1674
              data = paddle.uniform([1, 3, 32], paddle.float32)
1675 1676
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1677
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1678 1679 1680
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
1681
    if not in_dynamic_mode():
1682 1683 1684 1685
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1686 1687 1688 1689 1690
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
1691
    if in_dygraph_mode():
1692 1693
        pool_out = _C_ops.max_pool2d_with_index(x, pool_size, [1, 1], [0, 0],
                                                False, True)
1694 1695 1696
        return (squeeze(pool_out[0], [2]), squeeze(
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
    if _in_legacy_dygraph():
1697 1698 1699 1700
        pool_out = _legacy_C_ops.max_pool2d_with_index(x, 'pooling_type',
                                                       pool_type, 'ksize',
                                                       pool_size, 'adaptive',
                                                       True)
1701
        return (squeeze(pool_out[0], [2]), squeeze(
1702
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1703

1704 1705
    l_type = 'max_pool2d_with_index'

1706
    helper = LayerHelper(l_type, **locals())
1707
    dtype = helper.input_dtype(input_param_name='x')
1708 1709
    pool_out = helper.create_variable_for_type_inference(dtype)

1710
    mask = helper.create_variable_for_type_inference('int32')
1711 1712
    outputs = {"Out": pool_out, "Mask": mask}

1713 1714 1715 1716 1717 1718 1719 1720
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1721 1722

    return (squeeze(pool_out, [2]),
1723
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1724 1725


1726
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1727 1728 1729
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1730

1731 1732 1733
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1734
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1735
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1736

1737 1738
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1739

1740 1741
        Examples:
            .. code-block:: python
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
1759

1760
              input_data = paddle.randn(shape=(2, 3, 32, 32))
1761
              out = paddle.nn.functional.adaptive_max_pool2d(
1762
                            x = input_data,
1763 1764 1765
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
Z
zhiboniu 已提交
1766
    if not in_dynamic_mode():
1767 1768
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1769 1770
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1771 1772 1773 1774 1775 1776
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1777
        output_size = list(output_size)
1778 1779 1780 1781
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w
1782
    if in_dygraph_mode():
1783 1784
        pool_out = _C_ops.max_pool2d_with_index(x, output_size, [1, 1], [0, 0],
                                                False, True)
1785 1786
        return pool_out if return_mask else pool_out[0]
    if _in_legacy_dygraph():
1787 1788 1789
        pool_out = _legacy_C_ops.max_pool2d_with_index(x, 'pooling_type', 'max',
                                                       'ksize', output_size,
                                                       'adaptive', True)
1790
        return pool_out if return_mask else pool_out[0]
1791 1792 1793 1794

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1795
    dtype = helper.input_dtype(input_param_name='x')
1796 1797
    pool_out = helper.create_variable_for_type_inference(dtype)

1798
    mask = helper.create_variable_for_type_inference('int32')
1799 1800
    outputs = {"Out": pool_out, "Mask": mask}

1801 1802 1803 1804 1805 1806 1807 1808
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1809
    #return (pool_out, mask) if return_mask else pool_out
1810 1811 1812
    return pool_out


1813
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1814 1815 1816
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1817

1818 1819 1820
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1821
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1822
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1823

1824 1825
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1826

1827 1828
        Examples:
            .. code-block:: python
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
1849

1850
              input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1851
              out = paddle.nn.functional.adaptive_max_pool3d(
1852
                            x = input_data,
1853 1854 1855 1856
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

Z
zhiboniu 已提交
1857
    if not in_dynamic_mode():
1858 1859
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1860 1861
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1862 1863 1864 1865 1866 1867
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1868
        output_size = list(output_size)
1869 1870 1871 1872 1873 1874 1875
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1876
    if in_dynamic_mode():
1877 1878 1879 1880 1881 1882 1883 1884
        if in_dygraph_mode():
            # By default, strides is [1,1,1] and paddings is [0, 0, 0]
            pool_out = _C_ops.max_pool3d_with_index(x, output_size, [1, 1, 1],
                                                    [0, 0, 0], False, True)
        elif _in_legacy_dygraph():
            pool_out = _legacy_C_ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive',
                True)
1885
        return pool_out if return_mask else pool_out[0]
1886 1887 1888 1889

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1890
    dtype = helper.input_dtype(input_param_name='x')
1891 1892
    pool_out = helper.create_variable_for_type_inference(dtype)

1893
    mask = helper.create_variable_for_type_inference('int32')
1894 1895
    outputs = {"Out": pool_out, "Mask": mask}

1896 1897 1898 1899 1900 1901 1902 1903
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1904

1905
    return (pool_out, mask) if return_mask else pool_out