pooling.py 63.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17 18 19
from ...fluid.framework import in_dygraph_mode
from ...fluid.layers import utils, LayerHelper, unsqueeze, squeeze
from ...fluid.data_feeder import check_type, check_variable_and_dtype
20

21

22 23 24 25 26
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
27
    if len(x.shape) != dimension:
28 29 30
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
31 32


33
def _check_instance(x, x_name, types=(int, float)):
34 35 36 37 38 39

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


40 41 42
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
43
    else:
44
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
45 46


47 48 49 50
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
51 52


53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
75 76


77 78 79 80 81 82 83 84 85
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
86
                raise ValueError(
87 88 89 90 91 92 93 94 95 96 97 98 99 100
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
101
                raise ValueError(
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
122
    else:
123 124 125 126
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

127

128 129 130 131 132 133 134 135 136 137
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
138 139 140 141 142 143 144
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
145
               exclusive=True,
146 147
               ceil_mode=False,
               name=None):
D
Double_V 已提交
148
    """
149 150
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
151 152 153 154

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
155
                          `L` is the length of the feature. The data type is float32 or float64.
156
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
157
            it must contain an integer.
158
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
159 160 161 162 163 164 165 166
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
167
        exclusive (bool): Whether to exclude padding points in average pooling
168
                          mode, default is `True`.
169
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
170
            If it is set to False, the floor function will be used. The default value is False.
171 172 173 174 175 176 177 178 179
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
180 181
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
182 183 184 185
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
186 187 188 189 190 191 192 193
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
194 195 196
    """
    """NCL to NCHW"""
    data_format = "NCHW"
197 198
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
    _check_input(x, 3)
199
    x = unsqueeze(x, [2])
200
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
201 202 203 204 205 206 207
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

208 209 210
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
211

212 213
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
214 215 216 217 218

    if in_dygraph_mode():
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
219
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
220
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
221
            data_format)
222 223 224 225
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
226
    dtype = helper.input_dtype(input_param_name='x')
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
243
            "exclusive": exclusive,
244 245 246 247 248 249
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


250
def avg_pool2d(x,
251 252 253 254
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
255
               exclusive=True,
256 257
               divisor_override=None,
               data_format="NCHW",
258 259
               name=None):
    """
260 261
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
262

263
    Args:
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
284
        exclusive (bool): Whether to exclude padding points in average pooling
285 286 287 288 289
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
290 291 292
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
293
    
294 295
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
296
    
297 298 299 300
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
301
    
302 303
    Examples:
        .. code-block:: python
C
Chen Long 已提交
304 305 306 307 308 309 310 311 312 313 314
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
315
    """
316 317
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
318 319 320
    if stride is None:
        stride = kernel_size
    else:
321
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
322

323 324 325
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
326 327

    if in_dygraph_mode():
328 329 330 331
        output = core.ops.pool2d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'padding_algorithm', padding_algorithm, 'strides', stride,
            'paddings', padding, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
332
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
333
            data_format)
334 335 336 337 338
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
339

340
    op_type = 'pool2d'
341
    helper = LayerHelper(op_type, **locals())
342
    dtype = helper.input_dtype(input_param_name='x')
343 344 345 346 347
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
348
        outputs={"Out": pool_out},
349
        attrs={
350
            "pooling_type": "avg",
351 352 353 354 355 356 357 358
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
359
            "exclusive": exclusive,
360 361 362
            "data_format": data_format,
        })

363 364 365 366 367
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
368 369


370 371 372 373 374
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
375
               exclusive=True,
376 377 378
               divisor_override=None,
               data_format="NCDHW",
               name=None):
379
    """
380 381
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
382 383

    Args:
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
402
        exclusive (bool): Whether to exclude padding points in average pooling
403 404 405 406 407
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
408
        name(str, optional): For detailed information, please refer
409 410
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
411
    
412
    Returns:
413
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
414
    
415
    Raises:
416 417 418
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
419
    
420 421
    Examples:
        .. code-block:: python
C
Chen Long 已提交
422
          
423
          import paddle
C
Chen Long 已提交
424 425
          import numpy as np

426 427 428 429 430 431 432 433
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
434
    """
435 436 437 438 439 440
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
441

442 443 444
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
445 446

    if in_dygraph_mode():
447 448 449 450
        output = core.ops.pool3d(
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
451
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
452
            data_format)
453 454 455 456 457 458
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
459

460 461
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
462
    dtype = helper.input_dtype(input_param_name='x')
463 464
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
465 466

    helper.append_op(
467
        type=op_type,
468 469 470
        inputs={"X": x},
        outputs=outputs,
        attrs={
471 472 473 474 475 476 477 478 479
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
480
            "exclusive": exclusive,
481
            "data_format": data_format,
482 483
        })

484 485 486 487 488 489
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
490 491


492
def max_pool1d(x,
493 494 495
               kernel_size,
               stride=None,
               padding=0,
496
               return_mask=False,
497 498 499
               ceil_mode=False,
               name=None):
    """
500 501
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
502 503

    Args:
504 505 506
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
507
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
508
            it must contain an integer.
509
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
510 511 512 513 514 515 516 517
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
518
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
519 520
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
521 522 523 524 525
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
526

527 528 529
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
530
        ShapeError: If the input is not a 3-D tensor.
531
        ShapeError: If the output's shape calculated is not greater than 0.
532

533 534
    Examples:
        .. code-block:: python
535

536 537
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
538 539
          import numpy as np

540 541 542
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
543
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
544
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
545
    """
546 547 548 549 550 551
    """NCL to NCHW"""
    data_format = "NCHW"
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
552 553 554
    if stride is None:
        stride = kernel_size
    else:
555
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
556

557 558
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
559

560 561
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
562 563

    if in_dygraph_mode():
564
        if return_mask:
D
Double_V 已提交
565 566 567 568 569 570
            pool_out = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
571 572 573
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
574 575 576 577 578 579 580 581 582
        else:
            pool_out = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

583
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
584
    helper = LayerHelper(op_type, **locals())
585
    dtype = helper.input_dtype(input_param_name='x')
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

608
    return (squeeze(pool_out, [2]),
609
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
610 611


612
def max_pool2d(x,
613 614 615
               kernel_size,
               stride=None,
               padding=0,
616
               return_mask=False,
617 618 619 620
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    """
621 622
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
623 624 625 626 627 628 629 630

    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
631
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
632 633
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
634
            it must contain two integers, (stride_Height, stride_Width).
635
            Otherwise, the pool stride size will be a square of an int.
636 637 638 639 640 641 642
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
643
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
644
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
645
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
646 647 648 649 650 651 652
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
653 654
   
   Raises:
655 656 657
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
658
    
659 660
    Examples:
        .. code-block:: python
661

C
Chen Long 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
679
    """
680 681
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
682 683 684 685 686 687 688 689 690 691
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
692 693 694 695 696

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
697

698
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
699
        raise ValueError(
700
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
701 702
        )

703
    if in_dygraph_mode():
704
        if return_mask:
D
Double_V 已提交
705 706 707 708 709 710
            output = core.ops.max_pool2d_with_index(
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
711
            return output if return_mask else output[0]
D
Double_V 已提交
712
        else:
D
Double_V 已提交
713 714 715 716 717 718 719
            output = core.ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
720

721
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
722
    helper = LayerHelper(op_type, **locals())
723
    dtype = helper.input_dtype(input_param_name='x')
724
    pool_out = helper.create_variable_for_type_inference(dtype)
725 726
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}
727 728 729 730

    helper.append_op(
        type=op_type,
        inputs={"X": x},
731
        outputs=outputs,
732
        attrs={
733
            "pooling_type": 'max',
734 735 736
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
737
            "paddings": padding,
738 739 740 741
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
742
            "exclusive": True,
743 744 745
            "data_format": data_format,
        })

746
    return (pool_out, mask) if return_mask else pool_out
747 748 749 750 751 752


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
753
               return_mask=False,
754 755 756 757
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
758 759
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
760 761
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
762
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
763
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
764
            is a tuple or list, it must contain three integers,
765
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
766
            Otherwise, the pool kernel size will be the cube of an int.
767 768
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
769
            Otherwise, the pool stride size will be a cube of an int.
770 771 772 773 774 775 776
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
777
        ceil_mode (bool): ${ceil_mode_comment}
778
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
779 780 781 782 783 784
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
785
    
786 787
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
788
    
789 790 791 792
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
793
    
794 795
    Examples:
        .. code-block:: python
796

C
Chen Long 已提交
797 798 799
            import paddle
            import paddle.nn.functional as F
            import numpy as np
800

C
Chen Long 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
815 816 817 818 819 820 821 822
    """
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

823
    channel_last = _channel_last(data_format, 3)
824

825 826
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
827

828
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
829
        raise ValueError(
830
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
831 832
        )

833
    if in_dygraph_mode():
834
        if return_mask:
D
Double_V 已提交
835 836 837 838 839 840
            output = core.ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
841
            return output if return_mask else output[0]
D
Double_V 已提交
842
        else:
D
Double_V 已提交
843 844 845 846 847 848 849
            output = core.ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
850

851
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
852
    helper = LayerHelper(op_type, **locals())
853
    dtype = helper.input_dtype(input_param_name='x')
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    pool_out = helper.create_variable_for_type_inference(dtype)
    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

876
    return (pool_out, mask) if return_mask else pool_out
877 878


879
def adaptive_avg_pool1d(x, output_size, name=None):
880
    """
881 882
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
883

884
    Args:
885 886 887 888
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
889
        output_size (int): The target output size. It must be an integer.
890
        name(str, optional): For detailed information, please refer
891 892
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
893
    Returns:
894 895
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
896
    Raises:
897
            ValueError: 'output_size' should be an integer.
898 899
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
915
              import numpy as np
916

917 918 919 920 921
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
922 923
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'adaptive_pool2d')
924 925
    _check_input(x, 3)
    check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
926

927
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
928

929 930
    l_type = "pool2d"
    x = unsqueeze(x, [2])
931
    if in_dygraph_mode():
932 933 934
        pool_out = core.ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                   pool_size, 'adaptive', True)
        return squeeze(pool_out, [2])
935

936
    helper = LayerHelper(l_type, **locals())
937
    dtype = helper.input_dtype(input_param_name='x')
938 939
    pool_out = helper.create_variable_for_type_inference(dtype)

940
    outputs = {"Out": pool_out}
941
    helper.append_op(
942
        type=l_type,
943 944 945
        inputs={"X": x},
        outputs=outputs,
        attrs={
946 947 948
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
949 950
        })

951
    return squeeze(pool_out, [2])
952 953


954 955
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
956 957
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
958 959 960

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
961
                          The data type can be float32 or float64.
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
995

996 997 998
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
999
            out = paddle.nn.functional.adaptive_avg_pool2d(
1000 1001
                            x = x,
                            output_size=[3, 3])
1002
            # out.shape is [2, 3, 3, 3]
1003 1004
    """
    if not in_dygraph_mode():
1005
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1006
                                 'adaptive_avg_pool2d')
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1022
        output_size = list(output_size)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        output = core.ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1037
    dtype = helper.input_dtype(input_param_name='x')
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1058 1059
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1060 1061 1062

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1063
                          The data type can be float32, float64.
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1103
            out = paddle.nn.functional.adaptive_avg_pool3d(
1104 1105
                            x = x,
                            output_size=[3, 3, 3])
1106
            # out.shape is [2, 3, 3, 3, 3]
1107 1108
    """
    if not in_dygraph_mode():
1109 1110
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1126
        output_size = list(output_size)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        output = core.ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                                 'global_pooling', False, 'adaptive', True,
                                 'data_format', data_format)
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1143
    dtype = helper.input_dtype(input_param_name='x')
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1159 1160


1161
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1162 1163 1164 1165 1166 1167 1168 1169 1170
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1171
        output_size (int): The pool kernel size. The value should be an integer.
1172
        return_mask (bool): If true, the index of max pooling point will be returned along
1173 1174 1175 1176 1177 1178 1179 1180
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1181
            ValueError: 'output_size' should be an integer.
1182 1183
    Examples:
        .. code-block:: python
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1199
              import numpy as np
1200

1201 1202 1203
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1204
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1205 1206 1207 1208 1209 1210
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
    check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                             'adaptive_max_pool1d')
    _check_input(x, 3)
1211
    check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
1212
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    l_type = 'max_pool2d_with_index'

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1223
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1224 1225

    helper = LayerHelper(l_type, **locals())
1226
    dtype = helper.input_dtype(input_param_name='x')
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1243
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1244 1245


1246
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1247 1248 1249
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1250

1251 1252 1253
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1254
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1255
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1256

1257 1258
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1259

1260 1261
        Examples:
            .. code-block:: python
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
    _check_input(x, 4)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1294
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
1295 1296 1297 1298 1299

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1300
        output_size = list(output_size)
1301 1302 1303 1304 1305 1306 1307 1308
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool2d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1309
        return pool_out if return_mask else pool_out[0]
1310 1311 1312 1313

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1314
    dtype = helper.input_dtype(input_param_name='x')
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1329
    #return (pool_out, mask) if return_mask else pool_out
1330 1331 1332
    return pool_out


1333
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1334 1335 1336
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1337

1338 1339 1340
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1341
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1342
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1343

1344 1345
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1346

1347 1348
        Examples:
            .. code-block:: python
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
    _check_input(x, 5)
    #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1385
    check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
1386 1387 1388 1389 1390

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1391
        output_size = list(output_size)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
        pool_out = core.ops.max_pool3d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1402
        return pool_out if return_mask else pool_out[0]
1403 1404 1405 1406

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1407
    dtype = helper.input_dtype(input_param_name='x')
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    pool_out = helper.create_variable_for_type_inference(dtype)

    mask = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1423
    return (pool_out, mask) if return_mask else pool_out