pooling.py 75.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16
from ...fluid import core
17
from ...fluid.framework import in_dygraph_mode
18 19
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
20
from ...fluid.data_feeder import check_type, check_variable_and_dtype
W
wanghuancoder 已提交
21 22
from paddle import _C_ops
from paddle import _C_ops
23

24 25
__all__ = []

26

27 28 29 30 31
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
32
    if len(x.shape) != dimension:
33 34 35
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
36 37


38
def _check_instance(x, x_name, types=(int, float)):
39 40 41 42 43 44

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


D
Double_V 已提交
45 46 47 48 49 50 51 52 53 54 55
def _check_value_limitation(x, x_name, min_limit=1e-3):
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
                "Excepted the input {} to be greater than {} but received x: {}. ".
                format(x_name, min_limit, x))

    for ele in x:
        _check_value(ele, x_name)


56 57 58
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
59
    else:
60
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
61 62


63 64 65 66
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
67 68


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
91 92


93 94 95 96 97 98 99 100 101
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
102
                raise ValueError(
103 104 105 106 107 108 109 110 111 112 113 114 115 116
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
117
                raise ValueError(
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
138
    else:
139 140 141 142
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

143

144 145 146 147 148 149 150 151 152 153
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
154 155 156 157 158 159 160
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
161
               exclusive=True,
162 163
               ceil_mode=False,
               name=None):
D
Double_V 已提交
164
    """
165 166
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
167 168 169 170

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
171
                          `L` is the length of the feature. The data type is float32 or float64.
172
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
173
            it must contain an integer.
174
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
175 176 177 178 179 180 181 182
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
183
        exclusive (bool): Whether to exclude padding points in average pooling
184
                          mode, default is `True`.
185
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
186
            If it is set to False, the floor function will be used. The default value is False.
187 188 189 190 191 192 193 194 195
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
196 197
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
198 199 200 201
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
202 203 204 205 206 207 208 209
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
210 211 212
    """
    """NCL to NCHW"""
    data_format = "NCHW"
213 214
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
215
    _check_input(x, 3)
216
    x = unsqueeze(x, [2])
217
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
218 219 220 221 222 223 224
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
225 226 227
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

228 229 230
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
231

232 233
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
234 235

    if in_dygraph_mode():
W
wanghuancoder 已提交
236
        output = _C_ops.pool2d(
237 238
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
239
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
240
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
241
            data_format)
242 243 244 245
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
246
    dtype = helper.input_dtype(input_param_name='x')
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
263
            "exclusive": exclusive,
264 265 266 267 268 269
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


270
def avg_pool2d(x,
271 272 273 274
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
275
               exclusive=True,
276 277
               divisor_override=None,
               data_format="NCHW",
278 279
               name=None):
    """
280 281
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
282

283
    Args:
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
304
        exclusive (bool): Whether to exclude padding points in average pooling
305 306 307 308 309
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
310 311 312
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
313
    
314 315
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
316
    
317 318 319 320
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
321
    
322 323
    Examples:
        .. code-block:: python
C
Chen Long 已提交
324 325 326 327 328 329 330 331 332 333 334
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
335
    """
336
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
337 338 339
    if stride is None:
        stride = kernel_size
    else:
340
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
341

D
Double_V 已提交
342 343 344
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

345 346 347
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
348 349

    if in_dygraph_mode():
W
wanghuancoder 已提交
350 351 352 353 354 355
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', kernel_size,
                               'global_pooling', False, 'padding_algorithm',
                               padding_algorithm, 'strides', stride, 'paddings',
                               padding, 'use_cudnn', True, 'ceil_mode',
                               ceil_mode, 'use_mkldnn', False, 'exclusive',
                               exclusive, 'data_format', data_format)
356 357 358 359 360
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
361

362
    op_type = 'pool2d'
363
    helper = LayerHelper(op_type, **locals())
364
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
365
    dtype = helper.input_dtype(input_param_name='x')
366 367 368 369 370
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
371
        outputs={"Out": pool_out},
372
        attrs={
373
            "pooling_type": "avg",
374 375 376 377 378 379 380 381
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
382
            "exclusive": exclusive,
383 384 385
            "data_format": data_format,
        })

386 387 388 389 390
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
391 392


393 394 395 396 397
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
398
               exclusive=True,
399 400 401
               divisor_override=None,
               data_format="NCDHW",
               name=None):
402
    """
403 404
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
405 406

    Args:
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
425
        exclusive (bool): Whether to exclude padding points in average pooling
426 427 428 429 430
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
431
        name(str, optional): For detailed information, please refer
432 433
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
434
    
435
    Returns:
436
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
437
    
438
    Raises:
439 440 441
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
442
    
443 444
    Examples:
        .. code-block:: python
C
Chen Long 已提交
445
          
446
          import paddle
C
Chen Long 已提交
447 448
          import numpy as np

449 450 451 452 453 454 455 456
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
457
    """
458 459 460 461 462
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
463

464 465 466
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
467

D
Double_V 已提交
468 469 470
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

471
    if in_dygraph_mode():
W
wanghuancoder 已提交
472
        output = _C_ops.pool3d(
473 474 475
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides', stride,
            'paddings', padding, 'global_pooling', False, 'padding_algorithm',
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
476
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
477
            data_format)
478 479 480 481 482 483
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
484

485 486
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
487
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
488
    dtype = helper.input_dtype(input_param_name='x')
489 490
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
491 492

    helper.append_op(
493
        type=op_type,
494 495 496
        inputs={"X": x},
        outputs=outputs,
        attrs={
497 498 499 500 501 502 503 504 505
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
506
            "exclusive": exclusive,
507
            "data_format": data_format,
508 509
        })

510 511 512 513 514 515
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
516 517


518
def max_pool1d(x,
519 520 521
               kernel_size,
               stride=None,
               padding=0,
522
               return_mask=False,
523 524 525
               ceil_mode=False,
               name=None):
    """
526 527
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
528 529

    Args:
530 531 532
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
533
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
534
            it must contain an integer.
535
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
536 537 538 539 540 541 542 543
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
544
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
545 546
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
547 548 549 550 551
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
552

553 554 555
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
556
        ShapeError: If the input is not a 3-D tensor.
557
        ShapeError: If the output's shape calculated is not greater than 0.
558

559 560
    Examples:
        .. code-block:: python
561

562 563
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
564 565
          import numpy as np

566 567 568
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
569
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
570
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
571
    """
572 573
    """NCL to NCHW"""
    data_format = "NCHW"
574 575
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
576 577 578
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
579 580 581
    if stride is None:
        stride = kernel_size
    else:
582
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
583

584 585
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
586

587 588
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
589 590

    if in_dygraph_mode():
591
        if return_mask:
W
wanghuancoder 已提交
592
            pool_out = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
593 594 595 596 597
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
598 599 600
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
601
        else:
W
wanghuancoder 已提交
602
            pool_out = _C_ops.pool2d(
D
Double_V 已提交
603 604 605 606 607 608 609
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

610
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
611
    helper = LayerHelper(op_type, **locals())
612
    dtype = helper.input_dtype(input_param_name='x')
613
    pool_out = helper.create_variable_for_type_inference(dtype)
614
    mask = helper.create_variable_for_type_inference('int32')
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

635
    return (squeeze(pool_out, [2]),
636
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
637 638


639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
        default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d]
                            + kernel_size[d] - 2 * padding[d])
    if output_size is None:
        ret = default_size
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                "{} or {} elements, but it has a length of '{}'".format(
                    len(kernel_size), len(kernel_size) + 2, len(output_size)))
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
                    'invalid output_size "{}" (dim {} must be between {} and {})'.
                    format(output_size, d, min_size, max_size))

        ret = output_size
    return ret


667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
def max_unpool1d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
    """
    This API implements max unpooling 1d opereation.
    `max_unpool1d` accepts the output of `max_pool1d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
    
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"`, 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"` , 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
        raise ValueError("Attr(data_format) should be 'NCL'. Received "
                         "Attr(data_format): %s." % str(data_format))
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

    if in_dygraph_mode():
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x,
                "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size
        })
    return squeeze(unpool_out, [2])


776 777 778 779 780 781 782 783
def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
784
    """
785
    This API implements max unpooling 2d opereation.
786
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
787

788 789

    Args:
790 791 792
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`, 
                          where `N` is batch size, `C` is the number of channels,
793 794
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
795 796 797 798 799 800 801 802 803 804 805 806 807 808
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` , 
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
809 810 811
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
            Tensor: The output tensor of unpooling result. 

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
            

        Examples:
            .. code-block:: python
          
C
Chen Long 已提交
836 837
            import paddle
            import paddle.nn.functional as F
838

839
            data = paddle.rand(shape=[1,1,6,6])
840 841 842 843 844 845 846 847 848
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

            # specify a different output size than input size 
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
            # unpool_out shape: [1, 1, 7, 7] 

849 850
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

    if in_dygraph_mode():
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x,
                "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size
        })
    return unpool_out


891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
def max_unpool3d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
    """
    This API implements max unpooling 3d opereation.
    `max_unpool3d` accepts the output of `max_pool3d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
    
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`, 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` , 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
        raise ValueError("Attr(data_format) should be 'NCDHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

    if in_dygraph_mode():
        output = _C_ops.unpool3d(x, indices, 'unpooling_type', 'max', 'ksize',
                                 kernel_size, 'strides', stride, 'paddings',
                                 padding, "output_size", output_size,
                                 "data_format", data_format)
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x,
                "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size
        })
    return unpool_out


1003 1004 1005 1006 1007 1008 1009 1010 1011
def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1012 1013 1014 1015 1016 1017 1018 1019 1020
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
1021 1022 1023 1024 1025

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
1026

1027
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1028
        raise ValueError(
1029
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1030 1031
        )

1032
    if in_dygraph_mode():
1033
        if return_mask:
W
wanghuancoder 已提交
1034
            output = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
1035 1036 1037 1038 1039
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
1040
            return output if return_mask else output[0]
D
Double_V 已提交
1041
        else:
W
wanghuancoder 已提交
1042
            output = _C_ops.pool2d(
D
Double_V 已提交
1043 1044 1045 1046 1047 1048
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
1049

1050
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1051
    helper = LayerHelper(op_type, **locals())
1052 1053
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
1054
    dtype = helper.input_dtype(input_param_name='x')
1055
    pool_out = helper.create_variable_for_type_inference(dtype)
1056
    mask = helper.create_variable_for_type_inference("int32")
1057
    outputs = {"Out": pool_out, "Mask": mask}
1058 1059 1060 1061

    helper.append_op(
        type=op_type,
        inputs={"X": x},
1062
        outputs=outputs,
1063
        attrs={
1064
            "pooling_type": 'max',
1065 1066 1067
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
1068
            "paddings": padding,
1069 1070 1071 1072
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
1073
            "exclusive": True,
1074 1075 1076
            "data_format": data_format,
        })

1077
    return (pool_out, mask) if return_mask else pool_out
1078 1079 1080 1081 1082 1083


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
1084
               return_mask=False,
1085 1086 1087 1088
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
1089 1090
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
1091 1092
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1093
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1094
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1095
            is a tuple or list, it must contain three integers,
1096
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1097
            Otherwise, the pool kernel size will be the cube of an int.
1098 1099
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1100
            Otherwise, the pool stride size will be a cube of an int.
1101 1102 1103 1104 1105 1106 1107
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1108
        ceil_mode (bool): ${ceil_mode_comment}
1109
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1110 1111 1112 1113 1114 1115
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
1116
    
1117 1118
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
1119
    
1120 1121 1122 1123
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
1124
    
1125 1126
    Examples:
        .. code-block:: python
1127

C
Chen Long 已提交
1128 1129 1130
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1131

C
Chen Long 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
1146 1147 1148 1149 1150 1151 1152
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1153
    channel_last = _channel_last(data_format, 3)
1154

1155 1156
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
1157

1158
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1159
        raise ValueError(
1160
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1161 1162
        )

1163
    if in_dygraph_mode():
1164
        if return_mask:
W
wanghuancoder 已提交
1165
            output = _C_ops.max_pool3d_with_index(
D
Double_V 已提交
1166 1167 1168 1169 1170
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
1171
            return output if return_mask else output[0]
D
Double_V 已提交
1172
        else:
W
wanghuancoder 已提交
1173
            output = _C_ops.pool3d(
D
Double_V 已提交
1174 1175 1176 1177 1178 1179
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
1180

1181
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1182
    helper = LayerHelper(op_type, **locals())
1183
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1184
    dtype = helper.input_dtype(input_param_name='x')
1185
    pool_out = helper.create_variable_for_type_inference(dtype)
1186
    mask = helper.create_variable_for_type_inference('int32')
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

1207
    return (pool_out, mask) if return_mask else pool_out
1208 1209


1210
def adaptive_avg_pool1d(x, output_size, name=None):
1211
    """
1212 1213
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1214

1215
    Args:
1216 1217 1218 1219
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1220
        output_size (int): The target output size. It must be an integer.
1221
        name(str, optional): For detailed information, please refer
1222 1223
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
1224
    Returns:
1225 1226
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
1227
    Raises:
1228
            ValueError: 'output_size' should be an integer.
1229 1230
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1246
              import numpy as np
1247

1248 1249 1250 1251 1252
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
1253 1254 1255 1256
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1257 1258
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1259

1260
    x = unsqueeze(x, [2])
1261
    if in_dygraph_mode():
W
wanghuancoder 已提交
1262 1263
        pool_out = _C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                 pool_size, 'adaptive', True)
1264
        return squeeze(pool_out, [2])
1265

1266 1267
    l_type = "pool2d"

1268
    helper = LayerHelper(l_type, **locals())
1269
    dtype = helper.input_dtype(input_param_name='x')
1270 1271
    pool_out = helper.create_variable_for_type_inference(dtype)

1272
    outputs = {"Out": pool_out}
1273
    helper.append_op(
1274
        type=l_type,
1275 1276 1277
        inputs={"X": x},
        outputs=outputs,
        attrs={
1278 1279 1280
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
1281 1282
        })

1283
    return squeeze(pool_out, [2])
1284 1285


1286 1287
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1288 1289
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
1290 1291 1292

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1293
                          The data type can be float32 or float64.
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1327

1328 1329 1330
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1331
            out = paddle.nn.functional.adaptive_avg_pool2d(
1332 1333
                            x = x,
                            output_size=[3, 3])
1334
            # out.shape is [2, 3, 3, 3]
1335 1336
    """
    if not in_dygraph_mode():
1337
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1338
                                 'adaptive_avg_pool2d')
1339
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1354
        output_size = list(output_size)
1355 1356 1357 1358 1359 1360
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1361 1362 1363
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                               'global_pooling', False, 'adaptive', True,
                               'data_format', data_format)
1364 1365 1366 1367 1368
        return output

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1369
    dtype = helper.input_dtype(input_param_name='x')
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1390 1391
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1392 1393 1394

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1395
                          The data type can be float32, float64.
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1435
            out = paddle.nn.functional.adaptive_avg_pool3d(
1436 1437
                            x = x,
                            output_size=[3, 3, 3])
1438
            # out.shape is [2, 3, 3, 3, 3]
1439 1440
    """
    if not in_dygraph_mode():
1441 1442
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1443
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1458
        output_size = list(output_size)
1459 1460 1461 1462 1463 1464 1465 1466
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1467 1468 1469
        output = _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                               'global_pooling', False, 'adaptive', True,
                               'data_format', data_format)
1470 1471 1472 1473 1474
        return output

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1475
    dtype = helper.input_dtype(input_param_name='x')
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1491 1492


1493
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1494 1495 1496 1497 1498 1499 1500 1501 1502
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1503
        output_size (int): The pool kernel size. The value should be an integer.
1504
        return_mask (bool): If true, the index of max pooling point will be returned along
1505 1506 1507 1508 1509 1510 1511 1512
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1513
            ValueError: 'output_size' should be an integer.
1514 1515
    Examples:
        .. code-block:: python
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1531
              import numpy as np
1532

1533 1534 1535
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1536
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1537 1538 1539
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
1540 1541 1542 1543 1544
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1545 1546 1547 1548 1549 1550
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
    if in_dygraph_mode():
W
wanghuancoder 已提交
1551
        pool_out = _C_ops.max_pool2d_with_index(
1552 1553
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1554
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1555

1556 1557
    l_type = 'max_pool2d_with_index'

1558
    helper = LayerHelper(l_type, **locals())
1559
    dtype = helper.input_dtype(input_param_name='x')
1560 1561
    pool_out = helper.create_variable_for_type_inference(dtype)

1562
    mask = helper.create_variable_for_type_inference('int32')
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1576
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1577 1578


1579
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1580 1581 1582
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1583

1584 1585 1586
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1587
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1588
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1589

1590 1591
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1592

1593 1594
        Examples:
            .. code-block:: python
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1613

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1625 1626
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1627 1628 1629 1630 1631 1632
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1633
        output_size = list(output_size)
1634 1635 1636 1637 1638 1639
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1640
        pool_out = _C_ops.max_pool2d_with_index(
1641
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1642
        return pool_out if return_mask else pool_out[0]
1643 1644 1645 1646

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1647
    dtype = helper.input_dtype(input_param_name='x')
1648 1649
    pool_out = helper.create_variable_for_type_inference(dtype)

1650
    mask = helper.create_variable_for_type_inference('int32')
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1662
    #return (pool_out, mask) if return_mask else pool_out
1663 1664 1665
    return pool_out


1666
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1667 1668 1669
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1670

1671 1672 1673
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1674
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1675
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1676

1677 1678
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1679

1680 1681
        Examples:
            .. code-block:: python
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

    if not in_dygraph_mode():
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1716 1717
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1718 1719 1720 1721 1722 1723
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1724
        output_size = list(output_size)
1725 1726 1727 1728 1729 1730 1731 1732
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

    if in_dygraph_mode():
W
wanghuancoder 已提交
1733
        pool_out = _C_ops.max_pool3d_with_index(
1734
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1735
        return pool_out if return_mask else pool_out[0]
1736 1737 1738 1739

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1740
    dtype = helper.input_dtype(input_param_name='x')
1741 1742
    pool_out = helper.create_variable_for_type_inference(dtype)

1743
    mask = helper.create_variable_for_type_inference('int32')
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1756
    return (pool_out, mask) if return_mask else pool_out