engine.cc 30.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
19

A
Abhinav Arora 已提交
20
#include <string>
W
wanghuancoder 已提交
21

22
#include "NvInferRuntimeCommon.h"
23
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/inference/tensorrt/helper.h"
25
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/phi/common/data_type.h"
Y
Yan Chunwei 已提交
28 29 30 31 32

namespace paddle {
namespace inference {
namespace tensorrt {

33 34 35
int TensorRTEngine::runtime_batch_ = 1;
thread_local int TensorRTEngine::predictor_id_per_thread = -1;

36
void TensorRTEngine::Weight::SetDataType(phi::DataType type) {
37
  nvinfer1::DataType nv_type = nvinfer1::DataType::kFLOAT;
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  switch (type) {
    case phi::DataType::FLOAT32:
      nv_type = nvinfer1::DataType::kFLOAT;
      break;
    case phi::DataType::FLOAT16:
      nv_type = nvinfer1::DataType::kHALF;
      break;
    case phi::DataType::INT32:
      nv_type = nvinfer1::DataType::kINT32;
      break;
    case phi::DataType::INT8:
      nv_type = nvinfer1::DataType::kINT8;
      break;
#if IS_TRT_VERSION_GE(7000)
    case phi::DataType::BOOL:
      nv_type = nvinfer1::DataType::kBOOL;
      break;
#endif
    default:
      paddle::platform::errors::InvalidArgument(
          "Paddle-TRT loads weighths failed, found not supported data type %s.",
          type);
      break;
  }
  w_.type = nv_type;
}

65 66 67 68 69
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
70
    infer_network_.reset(infer_builder_->createNetworkV2(
71 72 73
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
74
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
75
  }
76 77

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
W
wenbin 已提交
78 79 80 81
  // optim_profile_ = infer_builder_->createOptimizationProfile();
  optim_profiles_.resize(max_profile_num_);
  for (int i = 0; i < max_profile_num_; i++)
    optim_profiles_[i] = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
82 83
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
nvinfer1::IExecutionContext *TensorRTEngine::context() {
  std::unique_lock<std::mutex> lock(mutex_);
  if (infer_context_.find(predictor_id_per_thread) == infer_context_.end()) {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    // We may see trt warning: Profile 0 has been chosen by another
    // IExecutionContext...
    // It's ok. We will set it later.
    nvinfer1::IExecutionContext *infer_context{nullptr};
    if (context_memory_sharing_) {
      infer_context =
          infer_engine_->createExecutionContextWithoutDeviceMemory();
    } else {
      infer_context = infer_engine_->createExecutionContext();
    }
    PADDLE_ENFORCE_NOT_NULL(
        infer_context,
        platform::errors::InvalidArgument(
            "TensorRT engine can not build execution context."));
    if (with_dynamic_shape_) {
      // need new profile if it's not the first
      if (cur_profile_num_ > 0) {
        infer_context->setOptimizationProfile(cur_profile_num_);
      }
      profile_index_[predictor_id_per_thread] = cur_profile_num_;
      ++cur_profile_num_;
    }
    infer_context_[predictor_id_per_thread].reset(infer_context);
  }
  return infer_context_[predictor_id_per_thread].get();
}

118 119
void TensorRTEngine::Execute(int batch_size,
                             std::vector<void *> *buffers,
120
                             cudaStream_t stream) {
N
nhzlx 已提交
121
  freshDeviceId();
122
  auto infer_context = context();
123 124 125 126 127 128 129 130 131 132
  if (context_memory_sharing_) {
    void *context_memory{nullptr};
    context_memory =
        inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
            .getContextMemory(
                predictor_id_per_thread,
                phi::GPUPlace(device_id_),
                phi::Stream(reinterpret_cast<phi::StreamId>(stream)));
    infer_context->setDeviceMemory(context_memory);
  }
133 134 135 136
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
137
  }
N
nhzlx 已提交
138 139 140
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
141
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
142
  freshDeviceId();
143
  VLOG(3) << "TRT to freeze network";
144 145 146 147 148 149 150
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
151 152
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
153 154
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);

Z
Zhaolong Xing 已提交
155 156 157
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
158
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
159 160 161
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
162 163
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
164 165 166
    }
  }

167
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
Z
Zhaolong Xing 已提交
168
  if (enable_int8) {
C
csy0225 已提交
169 170 171
    if (!use_dla_) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    }
172 173
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

174
    if (calibrator_) {
175
      infer_builder_config_->setInt8Calibrator(calibrator_);
176
    } else {
177
      infer_builder_config_->setInt8Calibrator(nullptr);
178 179 180 181 182 183 184 185

      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
186 187
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
188 189 190 191
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
192

193 194
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
195 196 197 198
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
199 200 201
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
202 203 204
        }
      }
    }
N
nhzlx 已提交
205
  }
Y
Yan Chunwei 已提交
206

207 208 209 210 211 212 213 214 215 216 217 218
  // If model is mixed precision, then we should cast all float output to
  // float32 precision. Otherwise, we can not confirm the output precision of
  // the trt engine.
  if (model_precision_ != phi::DataType::FLOAT32) {
    for (int i = 0; i < network()->getNbOutputs(); ++i) {
      network()->getOutput(i)->setAllowedFormats(
          static_cast<nvinfer1::TensorFormats>(
              1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR)));
      network()->getOutput(i)->setType(nvinfer1::DataType::kFLOAT);
    }
  }

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
234 235 236
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
237 238 239 240 241
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

242
  if (with_dynamic_shape_) {
243
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
W
wenbin 已提交
244 245
    for (int i = 0; i < max_profile_num_; i++) {
      for (auto &input : min_input_shape_) {
246
#if IS_TRT_VERSION_LT(7000)
W
wenbin 已提交
247
        // trt6 will check all_of input > 0
248 249
        if (!(std::all_of(input.second.begin(),
                          input.second.end(),
W
wenbin 已提交
250 251 252 253 254 255 256 257 258
                          [](int x) { return x > 0; }) &&
              std::all_of(max_input_shape_[input.first].begin(),
                          max_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(optim_input_shape_[input.first].begin(),
                          optim_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }))) {
          continue;
        }
259
#endif
W
wenbin 已提交
260 261 262 263 264 265
        VLOG(4) << "TRT dynamic_shape set " << input.first
                << " min: " << Vec2Str(input.second)
                << ", max: " << Vec2Str(max_input_shape_[input.first])
                << ", opt: " << Vec2Str(optim_input_shape_[input.first]);

        optim_profiles_[i]->setDimensions(
266 267
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMIN,
W
wenbin 已提交
268 269
            Vec2TRT_Dims(input.second, input.first, true));
        optim_profiles_[i]->setDimensions(
270 271
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kMAX,
W
wenbin 已提交
272 273
            Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
        optim_profiles_[i]->setDimensions(
274 275
            input.first.c_str(),
            nvinfer1::OptProfileSelector::kOPT,
W
wenbin 已提交
276 277
            Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
      }
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

      for (int input_id = 0; input_id < network()->getNbInputs(); input_id++) {
        auto input_name = network()->getInput(input_id)->getName();
        if (!itensor_map_.count(input_name)) continue;
        if (!GetITensor(input_name)->isShapeTensor()) continue;
        PADDLE_ENFORCE_EQ(min_shape_tensor_.count(input_name) &&
                              max_shape_tensor_.count(input_name) &&
                              optim_shape_tensor_.count(input_name),
                          true,
                          platform::errors::InvalidArgument(
                              "Fail to find min/max/optim shape value for TRT "
                              "network's shape tensor input named %s.",
                              input_name));
        auto min_vec = min_shape_tensor_.at(input_name);
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMIN,
                                           min_vec.data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(input_name,
                                           nvinfer1::OptProfileSelector::kMAX,
                                           max_shape_tensor_[input_name].data(),
                                           min_vec.size());
        optim_profiles_[i]->setShapeValues(
            input_name,
            nvinfer1::OptProfileSelector::kOPT,
            optim_shape_tensor_[input_name].data(),
            min_vec.size());
      }

W
wenbin 已提交
307
      infer_builder_config_->addOptimizationProfile(optim_profiles_[i]);
308
    }
309 310 311 312 313 314
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
315
    }
316
  }
317
#if IS_TRT_VERSION_GE(8200)
318 319 320 321
  if (use_inspector_) {
    infer_builder_config_->setProfilingVerbosity(
        nvinfer1::ProfilingVerbosity::kDETAILED);
  }
322 323
#endif

324
#if IS_TRT_VERSION_LT(8000)
325 326
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
327
#else
J
JingZhuangzhuang 已提交
328
  infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSPARSE_WEIGHTS);
Z
zlsh80826 已提交
329
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
330 331
      *network(), *infer_builder_config_));
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
Z
zlsh80826 已提交
332 333
  infer_engine_.reset(runtime->deserializeCudaEngine(ihost_memory_->data(),
                                                     ihost_memory_->size()));
334
#endif
335

336
  PADDLE_ENFORCE_NOT_NULL(
337 338 339 340
      infer_engine_,
      platform::errors::Fatal(
          "Build TensorRT cuda engine failed! Please recheck "
          "you configurations related to paddle-TensorRT."));
341

W
wenbin 已提交
342 343 344 345 346 347
  binding_num_ = infer_engine_->getNbBindings();
  // reset status for dynamic shape clone
  if (max_profile_num_ > 1) {
    infer_context_.clear();
    cur_profile_num_ = 0;
  }
348 349 350 351 352 353
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }
W
wenbin 已提交
354

355
  GetEngineInfo();
Y
Yan Chunwei 已提交
356 357
}

358
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
359
                                                nvinfer1::DataType dtype,
360
                                                const nvinfer1::Dims &dims) {
361 362
  PADDLE_ENFORCE_EQ(network() != nullptr,
                    true,
363 364 365
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
366
  PADDLE_ENFORCE_NOT_NULL(
367 368 369 370 371 372 373
      input,
      platform::errors::InvalidArgument("Adding input %s failed in "
                                        "TensorRT inference network. "
                                        "Please recheck your input.",
                                        name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(),
                    true,
374 375 376 377
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
378
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
379 380 381
  return input;
}

382 383
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer,
                                   int offset,
384 385
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
386
  SetITensor(name, output);
387
  PADDLE_ENFORCE_NOT_NULL(
388 389 390
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
391
  output->setName(name.c_str());
392 393
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
394 395 396 397
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
398
  network()->markOutput(*output);
399
  PADDLE_ENFORCE_EQ(
400 401
      output->isNetworkOutput(),
      true,
402 403 404
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
405 406
}

407 408
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
409
  PADDLE_ENFORCE_NOT_NULL(
410 411 412
      output,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
413
  output->setName(name.c_str());
414 415
  PADDLE_ENFORCE_EQ(output->isNetworkInput(),
                    false,
416 417 418 419
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
420
  network()->markOutput(*output);
L
Luo Tao 已提交
421
}
422 423 424 425 426 427 428 429 430 431 432 433 434
void TensorRTEngine::DeleteITensor(const std::string &name,
                                   nvinfer1::ITensor *tensor) {
  PADDLE_ENFORCE_NOT_NULL(
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      true,
      itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null", name));
  itensor_map_.erase(name);
}
L
Luo Tao 已提交
435

436 437
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
438
  PADDLE_ENFORCE_NOT_NULL(
439 440 441
      tensor,
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be null.", name));
442
  PADDLE_ENFORCE_EQ(
443 444
      0,
      itensor_map_.count(name),
445 446
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
447 448 449
  itensor_map_[name] = tensor;
}

450
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  if (itensor_map_.count(name)) {
    return itensor_map_[name];
  } else {
    ConvertWeight2ITensor(name);
    return itensor_map_[name];
  }
}

// For cases when input is not middle-tensor , but persistable tensor
// you should call this.
nvinfer1::ITensor *TensorRTEngine::ConvertWeight2ITensor(
    const std::string &name) {
  auto *var_v = scope_->FindVar(name);
  PADDLE_ENFORCE_NOT_NULL(
      var_v,
      platform::errors::NotFound("You are converting a persistable weight to a "
                                 "tensor, but there is no "
                                 "persistable variable called %s in scope.",
                                 name));
470
  auto *var_t = var_v->GetMutable<phi::DenseTensor>();
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
  auto weight = this->GetTrtWeight(name, *var_t);

  // Now we have create weights, then we need create a itensor
  auto var_dims = var_t->dims();
  nvinfer1::Dims trt_in_shape;
  trt_in_shape.nbDims = var_t->dims().size();
  for (int64_t i = 0; i < trt_in_shape.nbDims; i++) {
    trt_in_shape.d[i] = var_dims[i];
  }
  // In fact , this is not always right, because we can't determine if the 0th
  // dimension is batch. Just for run chenqu's model
  if (!this->with_dynamic_shape()) {
    trt_in_shape.nbDims--;
    for (int i = 0; i < trt_in_shape.nbDims; i++) {
      trt_in_shape.d[i] = trt_in_shape.d[i + 1];
    }
  }
  nvinfer1::ILayer *layer =
      TRT_ENGINE_ADD_LAYER(this, Constant, trt_in_shape, weight.get());
  this->SetITensor(name, layer->getOutput(0));
  return layer->getOutput(0);
L
Luo Tao 已提交
492 493
}

494 495 496 497 498
std::unordered_map<std::string, nvinfer1::ITensor *>
    *TensorRTEngine::GetITensorMap() {
  return &itensor_map_;
}

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
void TensorRTEngine::Deserialize(const std::string &engine_serialized_data) {
  freshDeviceId();
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));

  if (use_dla_) {
    if (precision_ != AnalysisConfig::Precision::kInt8 &&
        precision_ != AnalysisConfig::Precision::kHalf) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (runtime->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << runtime->getNbDLACores() << ", but got " << dla_core_
                     << ", so use use 0 as default.";
      }
      runtime->setDLACore(dla_core_);
      LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                << dla_core_;
    }
  }

  infer_engine_.reset(runtime->deserializeCudaEngine(
      engine_serialized_data.c_str(), engine_serialized_data.size()));

  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_,
      platform::errors::Fatal(
          "Building TRT cuda engine failed when deserializing engine info. "
          "Please check:\n1. Your TRT serialization is generated and loaded "
          "on the same GPU architecture;\n2. The Paddle Inference version of "
          "generating serialization file and doing inference are "
          "consistent."));

  binding_num_ = infer_engine_->getNbBindings();
  // for engine context memory sharing
  if (context_memory_sharing_) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .updateContextMemorySize(infer_engine_->getDeviceMemorySize(),
                                 predictor_id_per_thread);
  }

  GetEngineInfo();
}

548 549 550 551
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

552 553
// Note: Only for support plugin.
TensorRTEngine::Weight TensorRTEngine::GetFp16TrtWeight(
554
    const std::string &name, const phi::DenseTensor &weight_tensor) {
555 556 557 558 559 560 561 562 563 564 565
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
566
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
567 568 569 570 571 572 573 574 575
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());
  weight.SetDataType(nvinfer1::DataType::kHALF);
  // weight_tensor.dims().;

  // if trt not support dtype, we need to cast to  fp16.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
576
    phi::DenseTensor bf16_tensor;
577 578 579 580 581 582 583 584 585 586 587 588 589
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT16);
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(bf16_data[i]);
    }
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT32) {
590
    phi::DenseTensor fp32_tensor;
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    fp32_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp32_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT16);
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
    auto *fp16_data = weight_map[name_with_suffix]->mutable_data<float16>(
        platform::CPUPlace());
    auto *fp32_data = fp32_tensor.mutable_data<float>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp16_data[i] = static_cast<float16>(fp32_data[i]);
    }
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  }
  weight.SetValues(weight_map[name_with_suffix]->data());
  name_suffix_counter += 1;
  return weight;
}

// Note: Only for support plugin.
613
TensorRTEngine::Weight TensorRTEngine::GetFp32TrtWeight(
614
    const std::string &name, const phi::DenseTensor &weight_tensor) {
615 616 617 618
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
619
  platform::CPUPlace cpu_place;
620 621 622 623 624 625
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
626
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
627 628 629 630 631 632 633 634 635
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());
  weight.SetDataType(nvinfer1::DataType::kFLOAT);
  // weight_tensor.dims().;

  // if trt not support dtype, we need to cast to  fp32.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
636
    phi::DenseTensor bf16_tensor;
637 638 639 640 641 642 643 644 645 646 647 648 649
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
  } else if (weight_tensor.dtype() == phi::DataType::FLOAT16) {
650
    phi::DenseTensor fp16_tensor;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    fp16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &fp16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    weight_map[name_with_suffix]->Resize(weight_tensor.dims());
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *fp16_data = fp16_tensor.mutable_data<float16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(fp16_data[i]);
    }
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  }
  weight.SetValues(weight_map[name_with_suffix]->data());
  name_suffix_counter += 1;
  return weight;
670 671
}

672
TensorRTEngine::Weight TensorRTEngine::GetTrtWeight(
673
    const std::string &name, const phi::DenseTensor &weight_tensor) {
674 675 676 677 678 679 680 681 682 683 684 685
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
  platform::CPUPlace cpu_place;
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                    0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));

686
  weight_map[name_with_suffix].reset(new phi::DenseTensor());
687 688 689 690 691 692 693
  weight_map[name_with_suffix]->Resize(weight_tensor.dims());

  TensorRTEngine::Weight weight;
  weight.SetCount(weight_tensor.numel());

  // if trt not support dtype, we need to cast to fp32.
  if (weight_tensor.dtype() == phi::DataType::BFLOAT16) {
694
    phi::DenseTensor bf16_tensor;
695 696 697 698 699 700 701 702 703 704 705 706 707 708
    bf16_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &bf16_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::FLOAT32);
    auto *fp32_data =
        weight_map[name_with_suffix]->mutable_data<float>(platform::CPUPlace());
    auto *bf16_data = bf16_tensor.mutable_data<bfloat16>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      fp32_data[i] = static_cast<float>(bf16_data[i]);
    }
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(fp32_data);
  } else if (weight_tensor.dtype() == phi::DataType::INT64) {
709
    phi::DenseTensor int64_tensor;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    int64_tensor.clear();
    paddle::framework::TensorCopySync(
        weight_tensor, platform::CPUPlace(), &int64_tensor);
    weight_map[name_with_suffix]->set_type(
        paddle::experimental::DataType::INT32);
    auto *int32_data =
        weight_map[name_with_suffix]->mutable_data<int>(platform::CPUPlace());
    auto *int64_data = int64_tensor.mutable_data<int64_t>(platform::CPUPlace());
    for (int i = 0; i < weight_tensor.numel(); i++) {
      int32_data[i] = int64_data[i];
    }
    weight.SetDataType(phi::DataType::FLOAT32);
    weight.SetValues(int32_data);
  } else {
    paddle::framework::TensorCopySync(
        weight_tensor, cpu_place, weight_map[name_with_suffix].get());
    weight.SetDataType(weight_tensor.dtype());
    weight.SetValues(weight_map[name_with_suffix]->data());
  }
729

730 731 732
  name_suffix_counter += 1;
  return weight;
}
733

734 735
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

736
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
737 738
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
739
    plugin::PluginTensorRT *plugin) {
740
  owned_plugin_.emplace_back(plugin);
741
  return network()->addPluginV2(inputs, num_inputs, *plugin);
742 743
}

744
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
745 746
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
747 748 749 750 751
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

752
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
753 754
    nvinfer1::ITensor *const *inputs,
    int num_inputs,
755 756 757 758 759
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
760 761 762
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
763 764
  PADDLE_ENFORCE_LT(device_id_,
                    count,
765 766
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
767 768
                        device_id_,
                        count));
L
Leo Chen 已提交
769
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
770 771
}

772 773 774 775 776
void TensorRTEngine::GetEngineInfo() {
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      infer_engine_->createEngineInspector());
777 778
  auto *infer_context = context();
  infer_inspector->setExecutionContext(infer_context);
779 780 781 782 783 784 785 786
  LOG(INFO) << infer_inspector->getEngineInformation(
      nvinfer1::LayerInformationFormat::kONELINE);
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

Y
Yan Chunwei 已提交
787 788 789
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle