engine.cc 15.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
19
#include <string>
W
wanghuancoder 已提交
20

21
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
22 23
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"
24
#include "paddle/fluid/platform/gpu_info.h"
Y
Yan Chunwei 已提交
25 26 27 28 29

namespace paddle {
namespace inference {
namespace tensorrt {

30 31
int TensorRTEngine::runtime_batch_ = 1;

32 33 34 35 36
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
37
    infer_network_.reset(infer_builder_->createNetworkV2(
38 39 40
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
41
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
42
  }
43 44 45

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
  optim_profile_ = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
46 47
}

48 49
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
50
  freshDeviceId();
51 52 53 54 55 56 57
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
58
  }
N
nhzlx 已提交
59 60 61
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
62
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
63
  freshDeviceId();
64
  VLOG(3) << "TRT to freeze network";
65 66 67 68 69 70 71
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
72 73
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
74 75
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);

Z
Zhaolong Xing 已提交
76 77 78
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
79
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
80 81 82
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
83 84
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
85 86 87
    }
  }

88
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
Z
Zhaolong Xing 已提交
89
  if (enable_int8) {
90 91 92
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

93
    if (calibrator_) {
94
      infer_builder_config_->setInt8Calibrator(calibrator_);
95
    } else {
96
      infer_builder_config_->setInt8Calibrator(nullptr);
97 98 99 100 101 102 103 104 105

#if IS_TRT_VERSION_GE(5000)
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
106 107
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
108 109 110 111
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
112

113 114
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
115 116 117 118
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
119 120 121
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
122 123
        }
      }
124

125
#if IS_TRT_VERSION_GE(5122)
126 127 128 129 130 131 132 133 134 135
      auto is_layer_int8 = [&](nvinfer1::ILayer *layer) -> bool {
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
            return false;
          }
        }
136 137
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
138 139 140 141 142
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
            return false;
143 144
          }
        }
145 146 147 148 149 150
        return true;
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
151
      int layers_no_int8 = 0;
152 153 154 155
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
        if (!is_layer_int8(layer)) {
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
156
          ++layers_no_int8;
157
        }
158
      }
159 160 161 162 163 164 165
      // Disable int8 or build engine failed if all layers aren't int8
      if (layers_no_int8 == network()->getNbLayers()) {
        nvinfer1::BuilderFlags flags = infer_builder_config_->getFlags();
        flags = flags & ~(1U << static_cast<int>(nvinfer1::BuilderFlag::kINT8));
        // reset flags
        infer_builder_config_->setFlags(flags);
      }
166 167 168 169 170
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
171 172
#endif
    }
N
nhzlx 已提交
173
  }
Y
Yan Chunwei 已提交
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
190 191 192
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
193 194 195 196 197
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

198 199
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
200
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
201
    for (auto &input : min_input_shape_) {
202 203 204 205 206 207 208 209 210 211 212 213 214
#if IS_TRT_VERSION_LT(7000)
      // trt6 will check all_of input > 0
      if (!(std::all_of(input.second.begin(), input.second.end(),
                        [](int x) { return x > 0; }) &&
            std::all_of(max_input_shape_[input.first].begin(),
                        max_input_shape_[input.first].end(),
                        [](int x) { return x > 0; }) &&
            std::all_of(optim_input_shape_[input.first].begin(),
                        optim_input_shape_[input.first].end(),
                        [](int x) { return x > 0; }))) {
        continue;
      }
#endif
215 216 217 218
      VLOG(4) << "TRT dynamic_shape set " << input.first
              << " min: " << Vec2Str(input.second)
              << ", max: " << Vec2Str(max_input_shape_[input.first])
              << ", opt: " << Vec2Str(optim_input_shape_[input.first]);
219 220 221 222 223 224 225 226 227 228
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
          Vec2TRT_Dims(input.second, input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
          Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
          Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
    }
229
    infer_builder_config_->addOptimizationProfile(optim_profile_);
230 231 232 233 234 235
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
236
    }
237 238
#endif
  }
239 240

#if IS_TRT_VERSION_LT(8000)
241 242
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
243
#else
J
JingZhuangzhuang 已提交
244
  infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSPARSE_WEIGHTS);
Z
zlsh80826 已提交
245
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
246 247
      *network(), *infer_builder_config_));
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
Z
zlsh80826 已提交
248 249
  infer_engine_.reset(runtime->deserializeCudaEngine(ihost_memory_->data(),
                                                     ihost_memory_->size()));
250
#endif
251

252 253 254 255
  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_, platform::errors::Fatal(
                         "Build TensorRT cuda engine failed! Please recheck "
                         "you configurations related to paddle-TensorRT."));
Y
Yan Chunwei 已提交
256 257
}

258
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
259
                                                nvinfer1::DataType dtype,
260
                                                const nvinfer1::Dims &dims) {
261 262 263 264
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
265 266 267 268 269 270 271 272 273 274
  PADDLE_ENFORCE_NOT_NULL(
      input, platform::errors::InvalidArgument("Adding input %s failed in "
                                               "TensorRT inference network. "
                                               "Please recheck your input.",
                                               name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(), true,
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
275
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
276 277 278
  return input;
}

279 280 281
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
282
  SetITensor(name, output);
283 284 285
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
286
  output->setName(name.c_str());
287 288 289 290 291
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
292
  network()->markOutput(*output);
293 294 295 296 297
  PADDLE_ENFORCE_EQ(
      output->isNetworkOutput(), true,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
298 299
}

300 301
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
302 303 304
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
305
  output->setName(name.c_str());
306 307 308 309 310
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
311
  network()->markOutput(*output);
L
Luo Tao 已提交
312 313
}

314 315
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
316 317 318 319 320 321 322
  PADDLE_ENFORCE_NOT_NULL(
      tensor, platform::errors::InvalidArgument(
                  "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      0, itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
323 324 325
  itensor_map_[name] = tensor;
}

326
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
327 328 329
  PADDLE_ENFORCE_EQ(itensor_map_.count(name), true,
                    platform::errors::NotFound(
                        "Tensor named %s is not found in TRT engine", name));
L
Luo Tao 已提交
330 331 332
  return itensor_map_[name];
}

333 334 335 336
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

337 338 339 340
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
341 342
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
343 344
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
345
  platform::CPUPlace cpu_place;
346 347 348 349 350
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix), 0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
351 352 353 354 355 356
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
357 358 359
  return weight_data;
}

360 361
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

362
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
363 364
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
365
  owned_plugin_.emplace_back(plugin);
366
  return network()->addPluginV2(inputs, num_inputs, *plugin);
367 368
}

369 370 371 372 373 374 375
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

376 377 378 379 380 381 382
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
383 384 385
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
386 387 388 389
  PADDLE_ENFORCE_LT(device_id_, count,
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
                        device_id_, count));
L
Leo Chen 已提交
390
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
391 392
}

Y
Yan Chunwei 已提交
393 394 395
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle