engine.cc 8.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

void TensorRTEngine::Build(const DescType& paddle_model) {
  PADDLE_ENFORCE(false, "not implemented");
}

void TensorRTEngine::Execute(int batch_size) {
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41
  std::vector<void*> buffers;
  for (auto& buf : buffers_) {
    PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated");
    PADDLE_ENFORCE_GT(buf.max_size, 0);
    PADDLE_ENFORCE(buf.device == DeviceType::GPU);
    buffers.push_back(buf.buffer);
  }
  infer_context_->enqueue(batch_size, buffers.data(), *stream_, nullptr);
Y
Yan Chunwei 已提交
42 43 44 45
  cudaStreamSynchronize(*stream_);
}

TensorRTEngine::~TensorRTEngine() {
46
  cudaStreamSynchronize(*stream_);
Y
Yan Chunwei 已提交
47
  // clean buffer
Y
Yan Chunwei 已提交
48
  for (auto& buf : buffers_) {
49
    if (buf.device == DeviceType::GPU && buf.buffer != nullptr) {
Y
Yan Chunwei 已提交
50 51 52
      PADDLE_ENFORCE_EQ(0, cudaFree(buf.buffer));
      buf.buffer = nullptr;
      buf.max_size = 0;
Y
Yan Chunwei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    }
  }
}

void TensorRTEngine::FreezeNetwork() {
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");

  infer_context_.reset(infer_engine_->createExecutionContext());

  // allocate GPU buffers.
Y
Yan Chunwei 已提交
72
  buffers_.resize(buffer_sizes_.size());
Y
Yan Chunwei 已提交
73 74 75
  for (auto& item : buffer_sizes_) {
    if (item.second == 0) {
      auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str());
Y
Yan Chunwei 已提交
76
      auto dims = infer_engine_->getBindingDimensions(slot_offset);
Y
Yan Chunwei 已提交
77 78
      item.second = kDataTypeSize[static_cast<int>(
                        infer_engine_->getBindingDataType(slot_offset))] *
Y
Yan Chunwei 已提交
79
                    analysis::AccuDims(dims.d, dims.nbDims);
Y
Yan Chunwei 已提交
80
    }
Y
Yan Chunwei 已提交
81 82 83
    auto& buf = buffer(item.first);
    CHECK(buf.buffer == nullptr);  // buffer should be allocated only once.
    PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, item.second));
84 85
    VLOG(4) << "buffer malloc " << item.first << " " << item.second << " "
            << buf.buffer;
Y
Yan Chunwei 已提交
86 87
    buf.size = buf.max_size = item.second;
    buf.device = DeviceType::GPU;
Y
Yan Chunwei 已提交
88 89 90 91 92
  }
}

nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
                                                nvinfer1::DataType dtype,
Y
Yan Chunwei 已提交
93
                                                const nvinfer1::Dims& dims) {
Y
Yan Chunwei 已提交
94 95 96 97
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
Y
Yan Chunwei 已提交
98
  auto* input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
99
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
100 101
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
                        analysis::AccuDims(dims.d, dims.nbDims);
102
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
103
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
104 105 106 107 108 109 110 111 112
  return input;
}

void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                                   const std::string& name) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

  auto* output = layer->getOutput(offset);
113
  SetITensor(name, output);
Y
Yan Chunwei 已提交
114 115
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
116
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
117
  infer_network_->markOutput(*output);
118
  PADDLE_ENFORCE(output->isNetworkOutput());
Y
Yan Chunwei 已提交
119 120 121 122 123
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

L
Luo Tao 已提交
124 125 126 127 128 129 130
void TensorRTEngine::DeclareOutput(const std::string& name) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

  auto* output = TensorRTEngine::GetITensor(name);
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
131
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
132 133 134 135 136 137
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

Y
Yan Chunwei 已提交
138
void* TensorRTEngine::GetOutputInGPU(const std::string& name) {
Y
Yan Chunwei 已提交
139
  return buffer(name).buffer;
Y
Yan Chunwei 已提交
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155
void TensorRTEngine::GetOutputInGPU(const std::string& name, void* dst,
                                    size_t max_size) {
  // determine data size
  auto it = buffer_sizes_.find(name);
  PADDLE_ENFORCE(it != buffer_sizes_.end());
  PADDLE_ENFORCE_GT(it->second, 0);
  PADDLE_ENFORCE_GE(max_size, it->second);
  auto& buf = buffer(name);
  PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
  PADDLE_ENFORCE_EQ(cudaMemcpyAsync(dst, buf.buffer, it->second,
                                    cudaMemcpyDeviceToDevice, *stream_),
                    0);
}

Y
Yan Chunwei 已提交
156 157 158 159 160 161 162
void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
                                    size_t max_size) {
  // determine data size
  auto it = buffer_sizes_.find(name);
  PADDLE_ENFORCE(it != buffer_sizes_.end());
  PADDLE_ENFORCE_GT(it->second, 0);
  PADDLE_ENFORCE_GE(max_size, it->second);
Y
Yan Chunwei 已提交
163 164 165
  auto& buf = buffer(name);
  PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
  PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buf.buffer, it->second,
Y
Yan Chunwei 已提交
166 167 168
                                       cudaMemcpyDeviceToHost, *stream_));
}

Y
Yan Chunwei 已提交
169
Buffer& TensorRTEngine::buffer(const std::string& name) {
Y
Yan Chunwei 已提交
170 171 172 173 174 175 176
  PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first.");
  auto it = buffer_sizes_.find(name);
  PADDLE_ENFORCE(it != buffer_sizes_.end());
  auto slot_offset = infer_engine_->getBindingIndex(name.c_str());
  return buffers_[slot_offset];
}

177
void TensorRTEngine::SetInputFromCPU(const std::string& name, const void* data,
Y
Yan Chunwei 已提交
178
                                     size_t size) {
Y
Yan Chunwei 已提交
179 180 181 182 183 184
  auto& buf = buffer(name);
  PADDLE_ENFORCE_NOT_NULL(buf.buffer);
  PADDLE_ENFORCE_LE(size, buf.max_size, "buffer is too small");
  PADDLE_ENFORCE(buf.device == DeviceType::GPU);
  PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(buf.buffer, data, size,
                                       cudaMemcpyHostToDevice, *stream_));
Y
Yan Chunwei 已提交
185 186
}

187 188 189 190 191 192 193 194 195 196
void TensorRTEngine::SetInputFromGPU(const std::string& name, const void* data,
                                     size_t size) {
  auto& buf = buffer(name);
  PADDLE_ENFORCE_NOT_NULL(buf.buffer);
  PADDLE_ENFORCE_LE(size, buf.max_size, "buffer is too small");
  PADDLE_ENFORCE(buf.device == DeviceType::GPU);
  PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(buf.buffer, data, size,
                                       cudaMemcpyDeviceToDevice, *stream_));
}

L
Luo Tao 已提交
197 198 199
void TensorRTEngine::SetITensor(const std::string& name,
                                nvinfer1::ITensor* tensor) {
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
200
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
201 202 203 204 205
                    name);
  itensor_map_[name] = tensor;
}

nvinfer1::ITensor* TensorRTEngine::GetITensor(const std::string& name) {
Y
Yan Chunwei 已提交
206
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
207 208 209
  return itensor_map_[name];
}

Y
Yan Chunwei 已提交
210 211 212
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle