jit.py 62.9 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
from __future__ import print_function

18 19
import os
import pickle
20
import warnings
21
import functools
22
from collections import OrderedDict
23
import inspect
M
Ming-Xu Huang 已提交
24
import threading
25 26

import six
27
import paddle
J
Jiabin Yang 已提交
28
from paddle.fluid import core, dygraph
29 30
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
31
from paddle.fluid.layers.utils import flatten, pack_sequence_as
32
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
33
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
34
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
35
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
36
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
37
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
38 39
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
0
0x45f 已提交
40
from paddle.fluid.framework import Block, ParamBase, Program, Variable, Parameter, EagerParamBase
41
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
J
Jiabin Yang 已提交
42
from paddle.fluid.framework import dygraph_only, _non_static_mode
43
from paddle.fluid.wrapped_decorator import wrap_decorator
44

45 46
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
47
    'set_verbosity', 'save', 'load', 'not_to_static'
48
]
49 50 51 52 53 54 55 56 57 58


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


59
def _extract_vars(inputs, result_list, err_tag='inputs'):
60
    if isinstance(inputs, Variable):
61
        result_list.append(inputs)
62
    elif isinstance(inputs, (list, tuple)):
63
        for var in inputs:
64
            _extract_vars(var, result_list, err_tag)
65 66
    else:
        raise TypeError(
67 68
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}."
            .format(err_tag, type(inputs)))
69 70


71
def extract_vars(inputs, err_tag='inputs'):
72
    result_list = []
73
    _extract_vars(inputs, result_list, err_tag)
74 75 76
    return result_list


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
126 127
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
128
        if _non_static_mode() or not program_translator.enable_to_static:
129
            logging_utils.warn(
130
                "The decorator 'dygraph_to_static_func' doesn't work in "
131
                "dygraph mode or set ProgramTranslator.enable to False. "
132 133 134 135
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
136 137 138 139

    return __impl__


140
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
141

142

143 144 145 146 147 148
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
149
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


163 164 165 166
def declarative(function=None,
                input_spec=None,
                build_strategy=None,
                property=False):
167 168 169
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
170 171 172 173
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
174

175
    Args:
176
        function (callable): callable imperative function.
177
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
178
            information of each input Tensor.
179 180 181 182 183
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
184
        property(bool, Optional): whether the fucntion is python property. The default is False.
185

186

187
    Returns:
188
        Tensor(s): containing the numerical result.
189

190 191
    Examples:
        .. code-block:: python
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
207

208
    """
209

210 211
    def decorated(python_func):
        """
212
        Decorates a python function into a StaticFunction object.
213 214 215
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
216

217
        # Step 2. copy some attributes from original python function.
218 219 220 221
        static_layer = copy_decorator_attrs(original_func=python_func,
                                            decorated_obj=StaticFunction(
                                                function=python_func,
                                                input_spec=input_spec,
222 223
                                                build_strategy=build_strategy,
                                                property=property))
224 225

        return static_layer
226

227 228 229
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
230 231
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}"
            .format(type(build_strategy).__name__))
232

233 234
    # for usage: `declarative(foo, ...)`
    if function is not None:
235
        if isinstance(function, Layer):
236
            if isinstance(function.forward, StaticFunction):
237
                class_name = function.__class__.__name__
238
                logging_utils.warn(
239 240
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one."
                    .format(class_name))
241 242 243 244
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
245

246 247
    # for usage: `@declarative`
    return decorated
248 249


250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


290
class _SaveLoadConfig(object):
291

292 293 294 295 296
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
297 298
        # used for `paddle.load`
        self._keep_name_table = False
299 300 301 302

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

303 304
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
305 306 307 308 309
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
310
        self.with_hook = False
311

312 313 314
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

315 316 317 318 319 320
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
321 322
        if spec is None:
            return
323 324
        if not isinstance(spec, list):
            raise TypeError(
325
                "The config `output_spec` should be 'list', but received input type is %s."
326 327 328 329
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
330
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
331 332 333 334 335 336 337 338 339
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
340 341
        if filename is None:
            return
342 343
        if not isinstance(filename, six.string_types):
            raise TypeError(
344
                "The config `model_filename` should be str, but received input's type is %s."
345 346
                % type(filename))
        if len(filename) == 0:
347
            raise ValueError("The config `model_filename` is empty string.")
348 349 350 351 352 353 354 355
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
356 357
        if filename is None:
            return
358 359
        if not isinstance(filename, six.string_types):
            raise TypeError(
360
                "The config `params_filename` should be str, but received input's type is %s."
361 362
                % type(filename))
        if len(filename) == 0:
363
            raise ValueError("The config `params_filename` is empty string.")
364 365
        self._params_filename = filename

366 367 368 369 370 371
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
372 373
        if value is None:
            return
374 375
        if not isinstance(value, bool):
            raise TypeError(
376
                "The config `keep_name_table` should be bool value, but received input's type is %s."
377 378 379
                % type(value))
        self._keep_name_table = value

380

381
def _parse_save_configs(configs):
382 383 384
    supported_configs = [
        'output_spec', "with_hook", "combine_params", "clip_extra"
    ]
385 386 387 388 389 390 391 392 393 394 395

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
396
    inner_config.with_hook = configs.get('with_hook', False)
397 398
    inner_config.combine_params = configs.get("combine_params", False)
    inner_config.clip_extra = configs.get("clip_extra", False)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


421 422 423 424 425 426 427 428 429 430
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
431 432 433
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
434 435
    if input_spec is None:
        # no prune
436 437 438 439 440 441 442 443 444
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
445 446
        # no prune
        result_list = input_var_names
447
        # if input spec name not in input_var_names, only raise warning
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


471
def _get_output_vars(outputs, output_spec, with_hook=False):
472 473 474 475
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
476 477 478 479
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
480 481
    result_list = []
    output_vars_dict = OrderedDict()
482
    for var in flatten(outputs):
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
544

545
    return model_path, config
546 547


M
Ming-Xu Huang 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


def _run_save_pre_hooks(func):
637

M
Ming-Xu Huang 已提交
638 639 640 641 642 643 644 645 646 647
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


@_run_save_pre_hooks
648
@switch_to_static_graph
649
def save(layer, path, input_spec=None, **configs):
650
    """
651
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
652 653
    format model, which can be used for inference or fine-tuning after loading.

654
    It will save the translated program and all related persistable
655
    variables of input Layer to given ``path`` .
656 657

    ``path`` is the prefix of saved objects, and the saved translated program file
658
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
659
    and here also saved some additional variable description information to a file,
660
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
661 662

    The saved model can be loaded by follow APIs:
663 664
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
665 666
      - Other C++ inference APIs

667 668 669 670
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

671
    Args:
672
        layer (Layer|function): The Layer or function to be saved.
673
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
674 675 676
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
677
            the original Layer's forward method would be the inputs of the saved model. Default None.
678 679
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
680 681 682
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
683 684 685
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
686

687 688 689 690 691 692
    Returns:
        None

    Examples:
        .. code-block:: python

693
            # example 1: save layer
694
            import numpy as np
695 696 697
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
698

699 700 701
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
702

703 704 705 706 707 708 709
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
710

711 712 713 714
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
715

716 717
                def __len__(self):
                    return self.num_samples
718

719 720
            class LinearNet(nn.Layer):
                def __init__(self):
721
                    super(LinearNet, self).__init__()
722
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
723

724
                @paddle.jit.to_static
725 726 727
                def forward(self, x):
                    return self._linear(x)

728 729 730 731 732 733 734 735 736 737 738 739
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
740

741 742 743 744
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
745

746 747 748 749 750 751 752
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
753

754 755
            # train
            train(layer, loader, loss_fn, adam)
756

757
            # save
758 759
            path = "example_model/linear"
            paddle.jit.save(layer, path)
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
782 783
    """

784
    # 1. input build & check
785
    prog_translator = ProgramTranslator()
786
    if not prog_translator.enable_to_static:
787
        raise RuntimeError(
788
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
789
        )
790

791 792
    if not (isinstance(layer, Layer) or inspect.isfunction(layer)
            or isinstance(layer, StaticFunction)):
793
        raise TypeError(
794
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
795
            % type(layer))
796 797 798 799
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
800

801 802
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
803
    # function_spec, so here we save DataParallel._layers instead
804 805 806 807 808 809 810
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

811 812 813 814 815 816 817 818 819 820 821
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
822

823 824
    # avoid change user given input_spec
    inner_input_spec = None
825
    if input_spec is not None:
826 827 828 829 830 831 832 833 834
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

835
        if not isinstance(input_spec, (list, tuple)):
836 837 838
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
839
        inner_input_spec = []
840
        for var in flatten(input_spec):
841 842
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
843
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
844 845 846
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
847 848
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
849

850 851
    # parse configs
    configs = _parse_save_configs(configs)
852
    # whether outermost layer has pre/post hook, if does, we need also save
853
    # these operators in program.
854
    with_hook = configs.with_hook
855 856 857
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
858

859 860
    scope = core.Scope()
    extra_var_info = dict()
861 862
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
863 864
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
865 866
    else:
        # layer is function
867 868 869
        functions = [
            layer,
        ]
870 871 872

    all_vars = set()
    property_vals = []  # (value, key)
873 874 875 876
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
877 878 879 880 881 882 883 884
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
                        (immediate_val,
                         layer.__class__.__name__ + '.' + attr_func))
                    continue

885
                concrete_program = static_func.concrete_program_specify_input_spec(
886
                    inner_input_spec, with_hook=with_hook)
887 888
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
889
                # inner_input_spec is list[InputSpec], it should be packed with same structure
890 891 892 893
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
894 895
                static_forward = declarative(inner_layer.forward,
                                             input_spec=inner_input_spec)
896 897
                concrete_program = static_forward.concrete_program_specify_input_spec(
                    with_hook=with_hook)
898 899 900 901 902 903
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
904 905 906
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
907 908 909 910 911 912
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

913 914 915 916 917 918
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
919 920
                static_function = declarative(attr_func,
                                              input_spec=inner_input_spec)
921 922 923 924
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
925 926
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'
                        .format(layer))
927

928
        # when save multi `StaticFunction`, all `StaticFunction` share params.
929 930
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
931
            dygraph_state_dict = inner_layer.to_static_state_dict()
932 933
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
934 935
                dygraph_state_dict = attr_func._class_instance.to_static_state_dict(
                )
936 937

        if dygraph_state_dict:
938 939 940 941 942
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
943
            state_var_dict = dict()
944
            for structured_name, var in six.iteritems(dygraph_state_dict):
945
                state_names_dict[var.name] = structured_name
946
                state_var_dict[var.name] = var
947

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
                        param_or_buffer.name).get_tensor()
                    #src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = state_var_dict[
                        param_or_buffer.name].value().get_tensor()
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
                            param_or_buffer.name]
                    extra_info_dict[
                        'stop_gradient'] = param_or_buffer.stop_gradient
                    if isinstance(param_or_buffer, (ParamBase, EagerParamBase)):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
974 975

        # 4. build input & output of save_infernece_model
976 977 978 979 980 981 982 983 984 985 986 987
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
988 989
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
990
        # var name of output, and we don't recommended to use output_spec
991 992
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
993
        output_vars = _get_output_vars(concrete_program.outputs,
994
                                       configs.output_spec, with_hook)
995 996 997 998 999 1000 1001

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1002
        # so we don't support set model_filename & params_filename
1003
        if 'forward' == attr_func or not isinstance(layer, Layer):
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1020
                program_only=configs._program_only,
1021
                clip_extra=configs.clip_extra)
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        # collect all vars
        for var in concrete_program.main_program.list_vars():
            all_vars.add(var)

    # save shared params
    if combine_params:
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
            paddle.static.save_vars(Executor(_current_expected_place()),
                                    dirname=model_path,
                                    vars=list(
                                        filter(paddle.fluid.io.is_persistable,
                                               all_vars)),
                                    filename=params_filename)
        # TODO: save property

1039 1040 1041 1042 1043 1044 1045
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1046 1047
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1048 1049
    # configure redundant information to proceed.
    #
1050 1051
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1052 1053
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1054 1055 1056 1057 1058 1059 1060 1061

    # "layer" can only be Layer or function or StaticFunction.

    contain_parameter = False
    for var in concrete_program.main_program.list_vars():
        contain_parameter |= isinstance(var, Parameter)

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1062 1063 1064 1065
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1066 1067 1068


@dygraph_only
1069
def load(path, **configs):
1070 1071 1072
    """
    :api_attr: imperative

1073 1074
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1075
    then performing inference or fine-tune training.
1076 1077

    .. note::
1078
        If you load model saved by ``paddle.static.save_inference_model`` ,
1079 1080
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1081
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1082 1083 1084 1085
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1086
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1087 1088
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1089 1090
            DO NOT use them. Default None.
            The following options are currently supported:
1091 1092 1093 1094
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1095 1096
            by default.

1097 1098 1099 1100 1101

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1102
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1103 1104 1105 1106

        .. code-block:: python

            import numpy as np
1107 1108 1109
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1110

1111 1112 1113
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1114

1115 1116
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1117

1118 1119 1120 1121
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1122

1123 1124 1125 1126
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1127

1128 1129 1130 1131 1132
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1133
                    super(LinearNet, self).__init__()
1134
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1135

1136
                @paddle.jit.to_static
1137 1138 1139
                def forward(self, x):
                    return self._linear(x)

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1151
            # 1. train & save model.
1152

1153
            # create network
1154 1155 1156 1157
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1158
            # create data loader
1159 1160 1161 1162 1163 1164
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1165

1166 1167
            # train
            train(layer, loader, loss_fn, adam)
1168

1169
            # save
1170 1171
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1172

1173
            # 2. load model
1174

1175
            # load
1176
            loaded_layer = paddle.jit.load(path)
1177 1178

            # inference
1179 1180 1181
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1182 1183

            # fine-tune
1184 1185 1186
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1187 1188


1189
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1190 1191 1192 1193

        .. code-block:: python

            import numpy as np
1194
            import paddle
1195
            import paddle.static as static
1196 1197
            import paddle.nn as nn
            import paddle.optimizer as opt
1198
            import paddle.nn.functional as F
1199

1200 1201 1202
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1203

1204 1205 1206 1207 1208 1209 1210
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1211

1212 1213 1214 1215
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1216

1217 1218
                def __len__(self):
                    return self.num_samples
1219

1220 1221
            paddle.enable_static()

1222 1223
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1224
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1225 1226
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1227

1228
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1229 1230
            optimizer.minimize(avg_loss)

1231 1232 1233
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1234

1235 1236 1237 1238 1239
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1240
                batch_size=BATCH_SIZE,
1241 1242
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1243
                return_list=False,
1244
                num_workers=2)
1245 1246 1247 1248

            # 1. train and save inference model
            for data in loader():
                exe.run(
1249
                    static.default_main_program(),
1250
                    feed=data,
1251 1252 1253
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1254
            paddle.fluid.io.save_inference_model(
1255 1256 1257
                model_path, ["image"], [pred], exe)

            # 2. load model
1258 1259

            # enable dygraph mode
1260 1261 1262 1263
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1264

1265 1266 1267
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1268 1269
            pred = fc(x)

1270
            # fine-tune
1271
            fc.train()
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1289
    """
1290 1291 1292 1293
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1294
    return TranslatedLayer._construct(model_path, config)
1295 1296


1297
@dygraph_only
Z
Zeng Jinle 已提交
1298 1299 1300 1301 1302
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1303
    assert isinstance(layer, Layer)
1304 1305 1306 1307 1308 1309 1310 1311 1312

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1313
        original_outputs = layer(*inputs)
1314 1315 1316 1317
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1318
        out_vars = extract_vars(outputs, err_tag='outputs')
1319

1320
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1321
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1322 1323 1324 1325 1326
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1327
    return original_outputs, program, feed_names, fetch_names, parameters
1328 1329 1330 1331


class TracedLayer(object):
    """
1332
    :api_attr: imperative
1333

1334 1335 1336 1337 1338
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1339 1340 1341 1342

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1343 1344

    All TracedLayer objects should not be created by constructor and should
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1356
        self._params = parameters
1357 1358 1359 1360 1361

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1362
            src_tensor = p.value().get_tensor()
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1386
        This method is the only allowed method to create TracedLayer object.
1387 1388 1389 1390
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1391
            layer (paddle.nn.Layer): the layer object to be traced.
1392 1393
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1394 1395

        Returns:
1396
            tuple: A tuple of 2 items, whose the first item is the output of
1397 1398
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1399

1400
        Examples:
1401 1402
            .. code-block:: python:

1403
                import paddle
1404

1405
                class ExampleLayer(paddle.nn.Layer):
1406 1407
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1408
                        self._fc = paddle.nn.Linear(3, 10)
1409 1410 1411 1412

                    def forward(self, input):
                        return self._fc(input)

1413

1414 1415 1416 1417 1418 1419
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1420

1421 1422
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1423

1424 1425
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1426

1427
        """
1428 1429 1430 1431
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1432 1433
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1434 1435 1436 1437 1438 1439 1440
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1441
            build_strategy (BuildStrategy, optional): build strategy of
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1452
                import paddle
1453

1454
                class ExampleLayer(paddle.nn.Layer):
1455 1456
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1457
                        self._fc = paddle.nn.Linear(3, 10)
1458 1459 1460 1461

                    def forward(self, input):
                        return self._fc(input)

1462 1463 1464 1465
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1466

1467 1468
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1469

1470 1471
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1472

1473 1474
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1475 1476 1477

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1478 1479 1480 1481 1482 1483 1484 1485
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1502
        if _non_static_mode():
1503
            for x, name in zip(inputs, self._feed_names):
1504
                feed_dict[name] = x.value().get_tensor()
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1525
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1526
        """
1527 1528
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1529

1530 1531 1532
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1533
        Args:
1534
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1535
            feed (list[int], optional): the input variable indices of the saved
1536
                inference model. If None, all input variables of the
1537 1538 1539 1540 1541 1542
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1543
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1544 1545

        Returns:
1546
            None
1547 1548 1549 1550 1551

        Examples:
            .. code-block:: python:

                import numpy as np
1552
                import paddle
1553

1554
                class ExampleLayer(paddle.nn.Layer):
1555 1556
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1557
                        self._fc = paddle.nn.Linear(3, 10)
1558 1559 1560 1561

                    def forward(self, input):
                        return self._fc(input)

1562 1563
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1564 1565
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1566

1567 1568
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1569

1570 1571 1572 1573
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1574
                                                    exe)
1575 1576 1577

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1578
        """
1579
        check_type(path, "path", str,
1580 1581 1582 1583 1584
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
1585 1586 1587
                check_type(
                    f, "each element of feed", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1588 1589 1590 1591
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
1592 1593 1594
                check_type(
                    f, "each element of fetch", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1595
        clip_extra = kwargs.get('clip_extra', False)
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1608
        from paddle.fluid.io import save_inference_model
1609 1610 1611 1612 1613

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1614
            return [all_vars[idx] for idx in partial_vars]
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1625 1626 1627
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1628 1629 1630 1631 1632 1633 1634 1635
            save_inference_model(dirname=dirname,
                                 feeded_var_names=feeded_var_names,
                                 target_vars=target_vars,
                                 executor=self._exe,
                                 main_program=self._program.clone(),
                                 model_filename=model_filename,
                                 params_filename=params_filename,
                                 clip_extra=clip_extra)