jit.py 61.2 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
from __future__ import print_function

18 19
import os
import pickle
20
import warnings
21
import functools
22
from collections import OrderedDict
23
import inspect
M
Ming-Xu Huang 已提交
24
import threading
25 26

import six
27
import paddle
J
Jiabin Yang 已提交
28
from paddle.fluid import core, dygraph
29 30
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
31
from paddle.fluid.layers.utils import flatten, pack_sequence_as
32
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
33
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
34
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
35
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
36
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
37
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
38 39
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
0
0x45f 已提交
40
from paddle.fluid.framework import Block, ParamBase, Program, Variable, Parameter, EagerParamBase
41
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
J
Jiabin Yang 已提交
42
from paddle.fluid.framework import dygraph_only, _non_static_mode
43
from paddle.fluid.wrapped_decorator import wrap_decorator
44

45 46
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
47
    'set_verbosity', 'save', 'load', 'not_to_static'
48
]
49 50 51 52 53 54 55 56 57 58


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


59
def _extract_vars(inputs, result_list, err_tag='inputs'):
60
    if isinstance(inputs, Variable):
61
        result_list.append(inputs)
62
    elif isinstance(inputs, (list, tuple)):
63
        for var in inputs:
64
            _extract_vars(var, result_list, err_tag)
65 66
    else:
        raise TypeError(
67 68
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}."
            .format(err_tag, type(inputs)))
69 70


71
def extract_vars(inputs, err_tag='inputs'):
72
    result_list = []
73
    _extract_vars(inputs, result_list, err_tag)
74 75 76
    return result_list


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
126 127
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
128
        if _non_static_mode() or not program_translator.enable_to_static:
129
            logging_utils.warn(
130
                "The decorator 'dygraph_to_static_func' doesn't work in "
131
                "dygraph mode or set ProgramTranslator.enable to False. "
132 133 134 135
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
136 137 138 139

    return __impl__


140
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
141

142

143 144 145 146 147 148
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
149
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


163
def declarative(function=None, input_spec=None, build_strategy=None):
164 165 166
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
167 168 169 170
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
171

172
    Args:
173
        function (callable): callable imperative function.
174
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
175
            information of each input Tensor.
176 177 178 179 180 181
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.

182

183
    Returns:
184
        Tensor(s): containing the numerical result.
185

186 187
    Examples:
        .. code-block:: python
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
203

204
    """
205

206 207
    def decorated(python_func):
        """
208
        Decorates a python function into a StaticFunction object.
209 210 211
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
212

213
        # Step 2. copy some attributes from original python function.
214 215 216 217 218
        static_layer = copy_decorator_attrs(original_func=python_func,
                                            decorated_obj=StaticFunction(
                                                function=python_func,
                                                input_spec=input_spec,
                                                build_strategy=build_strategy))
219 220

        return static_layer
221

222 223 224
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
225 226
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}"
            .format(type(build_strategy).__name__))
227

228 229
    # for usage: `declarative(foo, ...)`
    if function is not None:
230
        if isinstance(function, Layer):
231
            if isinstance(function.forward, StaticFunction):
232
                class_name = function.__class__.__name__
233
                logging_utils.warn(
234 235
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one."
                    .format(class_name))
236 237 238 239
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
240

241 242
    # for usage: `@declarative`
    return decorated
243 244


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


285
class _SaveLoadConfig(object):
286

287 288 289 290 291
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
292 293
        # used for `paddle.load`
        self._keep_name_table = False
294 295 296 297

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

298 299
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
300 301 302 303 304
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
305
        self.with_hook = False
306 307 308 309 310 311 312

    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
313 314
        if spec is None:
            return
315 316
        if not isinstance(spec, list):
            raise TypeError(
317
                "The config `output_spec` should be 'list', but received input type is %s."
318 319 320 321
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
322
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
323 324 325 326 327 328 329 330 331
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
332 333
        if filename is None:
            return
334 335
        if not isinstance(filename, six.string_types):
            raise TypeError(
336
                "The config `model_filename` should be str, but received input's type is %s."
337 338
                % type(filename))
        if len(filename) == 0:
339
            raise ValueError("The config `model_filename` is empty string.")
340 341 342 343 344 345 346 347
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
348 349
        if filename is None:
            return
350 351
        if not isinstance(filename, six.string_types):
            raise TypeError(
352
                "The config `params_filename` should be str, but received input's type is %s."
353 354
                % type(filename))
        if len(filename) == 0:
355
            raise ValueError("The config `params_filename` is empty string.")
356 357
        self._params_filename = filename

358 359 360 361 362 363
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
364 365
        if value is None:
            return
366 367
        if not isinstance(value, bool):
            raise TypeError(
368
                "The config `keep_name_table` should be bool value, but received input's type is %s."
369 370 371
                % type(value))
        self._keep_name_table = value

372

373
def _parse_save_configs(configs):
374
    supported_configs = ['output_spec', "with_hook"]
375 376 377 378 379 380 381 382 383 384 385

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
386
    inner_config.with_hook = configs.get('with_hook', False)
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


409 410 411 412 413 414 415 416 417 418
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
419 420 421
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
422 423
    if input_spec is None:
        # no prune
424 425 426 427 428 429 430 431 432
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
433 434
        # no prune
        result_list = input_var_names
435
        # if input spec name not in input_var_names, only raise warning
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


459
def _get_output_vars(outputs, output_spec, with_hook=False):
460 461 462 463
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
464 465 466 467
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
468 469
    result_list = []
    output_vars_dict = OrderedDict()
470
    for var in flatten(outputs):
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
532

533
    return model_path, config
534 535


M
Ming-Xu Huang 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


def _run_save_pre_hooks(func):
625

M
Ming-Xu Huang 已提交
626 627 628 629 630 631 632 633 634 635
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


@_run_save_pre_hooks
636
@switch_to_static_graph
637
def save(layer, path, input_spec=None, **configs):
638
    """
639
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
640 641
    format model, which can be used for inference or fine-tuning after loading.

642
    It will save the translated program and all related persistable
643
    variables of input Layer to given ``path`` .
644 645

    ``path`` is the prefix of saved objects, and the saved translated program file
646
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
647
    and here also saved some additional variable description information to a file,
648
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
649 650

    The saved model can be loaded by follow APIs:
651 652
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
653 654
      - Other C++ inference APIs

655 656 657 658
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

659
    Args:
660
        layer (Layer|function): The Layer or function to be saved.
661
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
662 663 664
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
665
            the original Layer's forward method would be the inputs of the saved model. Default None.
666 667
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
668 669 670
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
671 672 673
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
674

675 676 677 678 679 680
    Returns:
        None

    Examples:
        .. code-block:: python

681
            # example 1: save layer
682
            import numpy as np
683 684 685
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
686

687 688 689
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
690

691 692 693 694 695 696 697
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
698

699 700 701 702
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
703

704 705
                def __len__(self):
                    return self.num_samples
706

707 708
            class LinearNet(nn.Layer):
                def __init__(self):
709
                    super(LinearNet, self).__init__()
710
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
711

712
                @paddle.jit.to_static
713 714 715
                def forward(self, x):
                    return self._linear(x)

716 717 718 719 720 721 722 723 724 725 726 727
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
728

729 730 731 732
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
733

734 735 736 737 738 739 740
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
741

742 743
            # train
            train(layer, loader, loss_fn, adam)
744

745
            # save
746 747
            path = "example_model/linear"
            paddle.jit.save(layer, path)
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
770 771
    """

772
    # 1. input build & check
773
    prog_translator = ProgramTranslator()
774
    if not prog_translator.enable_to_static:
775
        raise RuntimeError(
776
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
777
        )
778

779 780
    if not (isinstance(layer, Layer) or inspect.isfunction(layer)
            or isinstance(layer, StaticFunction)):
781
        raise TypeError(
782
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
783
            % type(layer))
784 785 786 787
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
788

789 790
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
791
    # function_spec, so here we save DataParallel._layers instead
792 793 794 795 796 797 798
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

799 800 801 802 803 804 805 806 807 808 809
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
810

811 812
    # avoid change user given input_spec
    inner_input_spec = None
813
    if input_spec is not None:
814 815 816 817 818 819 820 821 822
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

823
        if not isinstance(input_spec, (list, tuple)):
824 825 826
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
827
        inner_input_spec = []
828
        for var in flatten(input_spec):
829 830
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
831
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
832 833 834
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
835 836
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
837

838 839
    # parse configs
    configs = _parse_save_configs(configs)
840
    # whether outermost layer has pre/post hook, if does, we need also save
841
    # these operators in program.
842 843
    with_hook = configs.with_hook

844 845
    scope = core.Scope()
    extra_var_info = dict()
846 847
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
848 849
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
850 851
    else:
        # layer is function
852 853 854
        functions = [
            layer,
        ]
855 856 857 858 859
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
                concrete_program = static_func.concrete_program_specify_input_spec(
860
                    inner_input_spec, with_hook=with_hook)
861 862
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
863
                # inner_input_spec is list[InputSpec], it should be packed with same structure
864 865 866 867
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
868 869
                static_forward = declarative(inner_layer.forward,
                                             input_spec=inner_input_spec)
870 871
                concrete_program = static_forward.concrete_program_specify_input_spec(
                    with_hook=with_hook)
872 873 874 875 876 877 878
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue

879 880 881 882 883 884 885 886 887
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
888 889
                static_function = declarative(attr_func,
                                              input_spec=inner_input_spec)
890 891 892 893
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
894 895
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'
                        .format(layer))
896 897 898

        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
899
            dygraph_state_dict = inner_layer.to_static_state_dict()
900 901
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
902 903
                dygraph_state_dict = attr_func._class_instance.to_static_state_dict(
                )
904 905

        if dygraph_state_dict:
906 907 908 909 910
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
911
            state_var_dict = dict()
912
            for structured_name, var in six.iteritems(dygraph_state_dict):
913
                state_names_dict[var.name] = structured_name
914
                state_var_dict[var.name] = var
915 916

            # 3. share parameters from Layer to scope & record var info
J
Jiabin Yang 已提交
917 918 919 920 921 922 923 924 925 926 927
            with dygraph.guard():
                for param_or_buffer in concrete_program.parameters:
                    # share to scope
                    if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                        scr_tensor = param_or_buffer.value().get_map_tensor()
                        tgt_var = scope.var(param_or_buffer.name)
                        tgt_var.set_vocab(scr_tensor)
                    else:
                        param_or_buffer_tensor = scope.var(
                            param_or_buffer.name).get_tensor()
                        #src_tensor = param_or_buffer.value().get_tensor()
928 929
                        src_tensor = state_var_dict[
                            param_or_buffer.name].value().get_tensor()
J
Jiabin Yang 已提交
930 931 932 933 934 935 936 937 938 939
                        param_or_buffer_tensor._share_data_with(src_tensor)
                    # record var info
                    if param_or_buffer.name not in extra_var_info:
                        extra_info_dict = dict()
                        if param_or_buffer.name in state_names_dict:
                            extra_info_dict[
                                'structured_name'] = state_names_dict[
                                    param_or_buffer.name]
                        extra_info_dict[
                            'stop_gradient'] = param_or_buffer.stop_gradient
0
0x45f 已提交
940 941
                        if isinstance(param_or_buffer,
                                      (ParamBase, EagerParamBase)):
J
Jiabin Yang 已提交
942 943 944
                            extra_info_dict[
                                'trainable'] = param_or_buffer.trainable
                        extra_var_info[param_or_buffer.name] = extra_info_dict
945 946

        # 4. build input & output of save_infernece_model
947 948 949 950 951 952 953 954 955 956 957 958
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
959 960
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
961
        # var name of output, and we don't recommended to use output_spec
962 963
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
964
        output_vars = _get_output_vars(concrete_program.outputs,
965
                                       configs.output_spec, with_hook)
966 967 968 969 970 971 972

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
973
        # so we don't support set model_filename & params_filename
974
        if 'forward' == attr_func or not isinstance(layer, Layer):
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
991 992
                program_only=configs._program_only,
                clip_extra=False)
993 994 995 996 997 998 999 1000

    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1001 1002
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1003 1004
    # configure redundant information to proceed.
    #
1005 1006
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1007 1008
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1009 1010 1011 1012 1013 1014 1015 1016

    # "layer" can only be Layer or function or StaticFunction.

    contain_parameter = False
    for var in concrete_program.main_program.list_vars():
        contain_parameter |= isinstance(var, Parameter)

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1017 1018 1019 1020
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1021 1022 1023


@dygraph_only
1024
def load(path, **configs):
1025 1026 1027
    """
    :api_attr: imperative

1028 1029
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1030
    then performing inference or fine-tune training.
1031 1032

    .. note::
1033
        If you load model saved by ``paddle.static.save_inference_model`` ,
1034 1035
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1036
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1037 1038 1039 1040
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1041
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1042 1043
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1044 1045
            DO NOT use them. Default None.
            The following options are currently supported:
1046 1047 1048 1049
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1050 1051
            by default.

1052 1053 1054 1055 1056

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1057
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1058 1059 1060 1061

        .. code-block:: python

            import numpy as np
1062 1063 1064
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1065

1066 1067 1068
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1069

1070 1071
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1072

1073 1074 1075 1076
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1077

1078 1079 1080 1081
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1082

1083 1084 1085 1086 1087
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1088
                    super(LinearNet, self).__init__()
1089
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1090

1091
                @paddle.jit.to_static
1092 1093 1094
                def forward(self, x):
                    return self._linear(x)

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1106
            # 1. train & save model.
1107

1108
            # create network
1109 1110 1111 1112
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1113
            # create data loader
1114 1115 1116 1117 1118 1119
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1120

1121 1122
            # train
            train(layer, loader, loss_fn, adam)
1123

1124
            # save
1125 1126
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1127

1128
            # 2. load model
1129

1130
            # load
1131
            loaded_layer = paddle.jit.load(path)
1132 1133

            # inference
1134 1135 1136
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1137 1138

            # fine-tune
1139 1140 1141
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1142 1143


1144
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1145 1146 1147 1148

        .. code-block:: python

            import numpy as np
1149
            import paddle
1150
            import paddle.static as static
1151 1152
            import paddle.nn as nn
            import paddle.optimizer as opt
1153
            import paddle.nn.functional as F
1154

1155 1156 1157
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1158

1159 1160 1161 1162 1163 1164 1165
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1166

1167 1168 1169 1170
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1171

1172 1173
                def __len__(self):
                    return self.num_samples
1174

1175 1176
            paddle.enable_static()

1177 1178
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1179
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1180 1181
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1182

1183
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1184 1185
            optimizer.minimize(avg_loss)

1186 1187 1188
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1189

1190 1191 1192 1193 1194
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1195
                batch_size=BATCH_SIZE,
1196 1197
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1198
                return_list=False,
1199
                num_workers=2)
1200 1201 1202 1203

            # 1. train and save inference model
            for data in loader():
                exe.run(
1204
                    static.default_main_program(),
1205
                    feed=data,
1206 1207 1208
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1209
            paddle.fluid.io.save_inference_model(
1210 1211 1212
                model_path, ["image"], [pred], exe)

            # 2. load model
1213 1214

            # enable dygraph mode
1215 1216 1217 1218
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1219

1220 1221 1222
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1223 1224
            pred = fc(x)

1225
            # fine-tune
1226
            fc.train()
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1244
    """
1245 1246 1247 1248
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1249
    return TranslatedLayer._construct(model_path, config)
1250 1251


1252
@dygraph_only
Z
Zeng Jinle 已提交
1253 1254 1255 1256 1257
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1258
    assert isinstance(layer, Layer)
1259 1260 1261 1262 1263 1264 1265 1266 1267

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1268
        original_outputs = layer(*inputs)
1269 1270 1271 1272
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1273
        out_vars = extract_vars(outputs, err_tag='outputs')
1274

1275
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1276
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1277 1278 1279 1280 1281
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1282
    return original_outputs, program, feed_names, fetch_names, parameters
1283 1284 1285 1286


class TracedLayer(object):
    """
1287
    :api_attr: imperative
1288

1289 1290 1291 1292 1293
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1294 1295 1296 1297

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1298 1299

    All TracedLayer objects should not be created by constructor and should
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1311
        self._params = parameters
1312 1313 1314 1315 1316

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1317
            src_tensor = p.value().get_tensor()
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1341
        This method is the only allowed method to create TracedLayer object.
1342 1343 1344 1345
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1346
            layer (paddle.nn.Layer): the layer object to be traced.
1347 1348
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1349 1350

        Returns:
1351
            tuple: A tuple of 2 items, whose the first item is the output of
1352 1353
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1354

1355
        Examples:
1356 1357
            .. code-block:: python:

1358
                import paddle
1359

1360
                class ExampleLayer(paddle.nn.Layer):
1361 1362
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1363
                        self._fc = paddle.nn.Linear(3, 10)
1364 1365 1366 1367

                    def forward(self, input):
                        return self._fc(input)

1368

1369 1370 1371 1372 1373 1374
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1375

1376 1377
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1378

1379 1380
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1381

1382
        """
1383 1384 1385 1386
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1387 1388
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1389 1390 1391 1392 1393 1394 1395
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1396
            build_strategy (BuildStrategy, optional): build strategy of
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1407
                import paddle
1408

1409
                class ExampleLayer(paddle.nn.Layer):
1410 1411
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1412
                        self._fc = paddle.nn.Linear(3, 10)
1413 1414 1415 1416

                    def forward(self, input):
                        return self._fc(input)

1417 1418 1419 1420
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1421

1422 1423
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1424

1425 1426
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1427

1428 1429
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1430 1431 1432

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1433 1434 1435 1436 1437 1438 1439 1440
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1457
        if _non_static_mode():
1458
            for x, name in zip(inputs, self._feed_names):
1459
                feed_dict[name] = x.value().get_tensor()
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1480
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1481
        """
1482 1483
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1484

1485 1486 1487
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1488
        Args:
1489
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1490
            feed (list[int], optional): the input variable indices of the saved
1491
                inference model. If None, all input variables of the
1492 1493 1494 1495 1496 1497
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1498
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1499 1500

        Returns:
1501
            None
1502 1503 1504 1505 1506

        Examples:
            .. code-block:: python:

                import numpy as np
1507
                import paddle
1508

1509
                class ExampleLayer(paddle.nn.Layer):
1510 1511
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1512
                        self._fc = paddle.nn.Linear(3, 10)
1513 1514 1515 1516

                    def forward(self, input):
                        return self._fc(input)

1517 1518
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1519 1520
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1521

1522 1523
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1524

1525 1526 1527 1528
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1529
                                                    exe)
1530 1531 1532

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1533
        """
1534
        check_type(path, "path", str,
1535 1536 1537 1538 1539
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
1540 1541 1542
                check_type(
                    f, "each element of feed", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1543 1544 1545 1546
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
1547 1548 1549
                check_type(
                    f, "each element of fetch", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1550
        clip_extra = kwargs.get('clip_extra', False)
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1563
        from paddle.fluid.io import save_inference_model
1564 1565 1566 1567 1568

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1569
            return [all_vars[idx] for idx in partial_vars]
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1580 1581 1582
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1583 1584 1585 1586 1587 1588 1589 1590
            save_inference_model(dirname=dirname,
                                 feeded_var_names=feeded_var_names,
                                 target_vars=target_vars,
                                 executor=self._exe,
                                 main_program=self._program.clone(),
                                 model_filename=model_filename,
                                 params_filename=params_filename,
                                 clip_extra=clip_extra)