jit.py 62.8 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
from __future__ import print_function

18 19
import os
import pickle
20
import warnings
21
import functools
22
from collections import OrderedDict
23
import inspect
M
Ming-Xu Huang 已提交
24
import threading
25 26

import six
27
import paddle
J
Jiabin Yang 已提交
28
from paddle.fluid import core, dygraph
29 30
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
31
from paddle.fluid.layers.utils import flatten, pack_sequence_as
32
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
33
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
34
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
35
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
36
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
37
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
38 39
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
0
0x45f 已提交
40
from paddle.fluid.framework import Block, ParamBase, Program, Variable, Parameter, EagerParamBase
41
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
J
Jiabin Yang 已提交
42
from paddle.fluid.framework import dygraph_only, _non_static_mode
43
from paddle.fluid.wrapped_decorator import wrap_decorator
44

45 46
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
47
    'set_verbosity', 'save', 'load', 'not_to_static'
48
]
49 50 51 52 53 54 55 56 57 58


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


59
def _extract_vars(inputs, result_list, err_tag='inputs'):
60
    if isinstance(inputs, Variable):
61
        result_list.append(inputs)
62
    elif isinstance(inputs, (list, tuple)):
63
        for var in inputs:
64
            _extract_vars(var, result_list, err_tag)
65 66
    else:
        raise TypeError(
67 68
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}."
            .format(err_tag, type(inputs)))
69 70


71
def extract_vars(inputs, err_tag='inputs'):
72
    result_list = []
73
    _extract_vars(inputs, result_list, err_tag)
74 75 76
    return result_list


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
126 127
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
128
        if _non_static_mode() or not program_translator.enable_to_static:
129
            logging_utils.warn(
130
                "The decorator 'dygraph_to_static_func' doesn't work in "
131
                "dygraph mode or set ProgramTranslator.enable to False. "
132 133 134 135
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
136 137 138 139

    return __impl__


140
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
141

142

143 144 145 146 147 148
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
149
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


163 164 165 166
def declarative(function=None,
                input_spec=None,
                build_strategy=None,
                property=False):
167 168 169
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
170 171 172 173
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
174

175
    Args:
176
        function (callable): callable imperative function.
177
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
178
            information of each input Tensor.
179 180 181 182 183
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
184
        property(bool, Optional): whether the fucntion is python property. The default is False.
185

186

187
    Returns:
188
        Tensor(s): containing the numerical result.
189

190 191
    Examples:
        .. code-block:: python
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
207

208
    """
209

210 211
    def decorated(python_func):
        """
212
        Decorates a python function into a StaticFunction object.
213 214 215
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
216

217
        # Step 2. copy some attributes from original python function.
218 219 220 221
        static_layer = copy_decorator_attrs(original_func=python_func,
                                            decorated_obj=StaticFunction(
                                                function=python_func,
                                                input_spec=input_spec,
222 223
                                                build_strategy=build_strategy,
                                                property=property))
224 225

        return static_layer
226

227 228 229
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
230 231
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}"
            .format(type(build_strategy).__name__))
232

233 234
    # for usage: `declarative(foo, ...)`
    if function is not None:
235
        if isinstance(function, Layer):
236
            if isinstance(function.forward, StaticFunction):
237
                class_name = function.__class__.__name__
238
                logging_utils.warn(
239 240
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one."
                    .format(class_name))
241 242 243 244
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
245

246 247
    # for usage: `@declarative`
    return decorated
248 249


250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


290
class _SaveLoadConfig(object):
291

292 293 294 295 296
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
297 298
        # used for `paddle.load`
        self._keep_name_table = False
299 300 301 302

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

303 304
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
305 306 307 308 309
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
310
        self.with_hook = False
311

312 313 314
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

315 316 317 318 319 320
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
321 322
        if spec is None:
            return
323 324
        if not isinstance(spec, list):
            raise TypeError(
325
                "The config `output_spec` should be 'list', but received input type is %s."
326 327 328 329
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
330
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
331 332 333 334 335 336 337 338 339
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
340 341
        if filename is None:
            return
342 343
        if not isinstance(filename, six.string_types):
            raise TypeError(
344
                "The config `model_filename` should be str, but received input's type is %s."
345 346
                % type(filename))
        if len(filename) == 0:
347
            raise ValueError("The config `model_filename` is empty string.")
348 349 350 351 352 353 354 355
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
356 357
        if filename is None:
            return
358 359
        if not isinstance(filename, six.string_types):
            raise TypeError(
360
                "The config `params_filename` should be str, but received input's type is %s."
361 362
                % type(filename))
        if len(filename) == 0:
363
            raise ValueError("The config `params_filename` is empty string.")
364 365
        self._params_filename = filename

366 367 368 369 370 371
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
372 373
        if value is None:
            return
374 375
        if not isinstance(value, bool):
            raise TypeError(
376
                "The config `keep_name_table` should be bool value, but received input's type is %s."
377 378 379
                % type(value))
        self._keep_name_table = value

380

381
def _parse_save_configs(configs):
382
    supported_configs = ['output_spec', "with_hook", "use_combine"]
383 384 385 386 387 388 389 390 391 392 393

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
394
    inner_config.with_hook = configs.get('with_hook', False)
395
    inner_config.combine_params = configs.get("use_combine", False)
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


418 419 420 421 422 423 424 425 426 427
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
428 429 430
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
431 432
    if input_spec is None:
        # no prune
433 434 435 436 437 438 439 440 441
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
442 443
        # no prune
        result_list = input_var_names
444
        # if input spec name not in input_var_names, only raise warning
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


468
def _get_output_vars(outputs, output_spec, with_hook=False):
469 470 471 472
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
473 474 475 476
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
477 478
    result_list = []
    output_vars_dict = OrderedDict()
479
    for var in flatten(outputs):
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
541

542
    return model_path, config
543 544


M
Ming-Xu Huang 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


class HookRemoveHelper(object):
    """ A HookRemoveHelper that can be used to remove hook. """

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


def _run_save_pre_hooks(func):
634

M
Ming-Xu Huang 已提交
635 636 637 638 639 640 641 642 643 644
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


@_run_save_pre_hooks
645
@switch_to_static_graph
646
def save(layer, path, input_spec=None, **configs):
647
    """
648
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
649 650
    format model, which can be used for inference or fine-tuning after loading.

651
    It will save the translated program and all related persistable
652
    variables of input Layer to given ``path`` .
653 654

    ``path`` is the prefix of saved objects, and the saved translated program file
655
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
656
    and here also saved some additional variable description information to a file,
657
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
658 659

    The saved model can be loaded by follow APIs:
660 661
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
662 663
      - Other C++ inference APIs

664 665 666 667
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

668
    Args:
669
        layer (Layer|function): The Layer or function to be saved.
670
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
671 672 673
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
674
            the original Layer's forward method would be the inputs of the saved model. Default None.
675 676
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
677 678 679
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
680 681 682
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
683

684 685 686 687 688 689
    Returns:
        None

    Examples:
        .. code-block:: python

690
            # example 1: save layer
691
            import numpy as np
692 693 694
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
695

696 697 698
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
699

700 701 702 703 704 705 706
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
707

708 709 710 711
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
712

713 714
                def __len__(self):
                    return self.num_samples
715

716 717
            class LinearNet(nn.Layer):
                def __init__(self):
718
                    super(LinearNet, self).__init__()
719
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
720

721
                @paddle.jit.to_static
722 723 724
                def forward(self, x):
                    return self._linear(x)

725 726 727 728 729 730 731 732 733 734 735 736
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
737

738 739 740 741
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
742

743 744 745 746 747 748 749
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
750

751 752
            # train
            train(layer, loader, loss_fn, adam)
753

754
            # save
755 756
            path = "example_model/linear"
            paddle.jit.save(layer, path)
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
779 780
    """

781
    # 1. input build & check
782
    prog_translator = ProgramTranslator()
783
    if not prog_translator.enable_to_static:
784
        raise RuntimeError(
785
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
786
        )
787

788 789
    if not (isinstance(layer, Layer) or inspect.isfunction(layer)
            or isinstance(layer, StaticFunction)):
790
        raise TypeError(
791
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
792
            % type(layer))
793 794 795 796
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
797

798 799
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
800
    # function_spec, so here we save DataParallel._layers instead
801 802 803 804 805 806 807
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

808 809 810 811 812 813 814 815 816 817 818
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
819

820 821
    # avoid change user given input_spec
    inner_input_spec = None
822
    if input_spec is not None:
823 824 825 826 827 828 829 830 831
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

832
        if not isinstance(input_spec, (list, tuple)):
833 834 835
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
836
        inner_input_spec = []
837
        for var in flatten(input_spec):
838 839
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
0
0x45f 已提交
840
            elif isinstance(var, (core.VarBase, core.eager.Tensor, Variable)):
841 842 843
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
844 845
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
846

847 848
    # parse configs
    configs = _parse_save_configs(configs)
849
    # whether outermost layer has pre/post hook, if does, we need also save
850
    # these operators in program.
851
    with_hook = configs.with_hook
852 853 854
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
855

856 857
    scope = core.Scope()
    extra_var_info = dict()
858 859
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
860 861
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
862 863
    else:
        # layer is function
864 865 866
        functions = [
            layer,
        ]
867 868 869

    all_vars = set()
    property_vals = []  # (value, key)
870 871 872 873
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
874 875 876 877 878 879 880 881
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
                        (immediate_val,
                         layer.__class__.__name__ + '.' + attr_func))
                    continue

882
                concrete_program = static_func.concrete_program_specify_input_spec(
883
                    inner_input_spec, with_hook=with_hook)
884 885
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
886
                # inner_input_spec is list[InputSpec], it should be packed with same structure
887 888 889 890
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
891 892
                static_forward = declarative(inner_layer.forward,
                                             input_spec=inner_input_spec)
893 894
                concrete_program = static_forward.concrete_program_specify_input_spec(
                    with_hook=with_hook)
895 896 897 898 899 900
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
901 902 903
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
904 905 906 907 908 909
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

910 911 912 913 914 915
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
916 917
                static_function = declarative(attr_func,
                                              input_spec=inner_input_spec)
918 919 920 921
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
922 923
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'
                        .format(layer))
924

925
        # when save multi `StaticFunction`, all `StaticFunction` share params.
926 927
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
928
            dygraph_state_dict = inner_layer.to_static_state_dict()
929 930
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
931 932
                dygraph_state_dict = attr_func._class_instance.to_static_state_dict(
                )
933 934

        if dygraph_state_dict:
935 936 937 938 939
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
940
            state_var_dict = dict()
941
            for structured_name, var in six.iteritems(dygraph_state_dict):
942
                state_names_dict[var.name] = structured_name
943
                state_var_dict[var.name] = var
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
                        param_or_buffer.name).get_tensor()
                    #src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = state_var_dict[
                        param_or_buffer.name].value().get_tensor()
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
                            param_or_buffer.name]
                    extra_info_dict[
                        'stop_gradient'] = param_or_buffer.stop_gradient
                    if isinstance(param_or_buffer, (ParamBase, EagerParamBase)):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
971 972

        # 4. build input & output of save_infernece_model
973 974 975 976 977 978 979 980 981 982 983 984
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
985 986
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
987
        # var name of output, and we don't recommended to use output_spec
988 989
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
990
        output_vars = _get_output_vars(concrete_program.outputs,
991
                                       configs.output_spec, with_hook)
992 993 994 995 996 997 998

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
999
        # so we don't support set model_filename & params_filename
1000
        if 'forward' == attr_func or not isinstance(layer, Layer):
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1017 1018
                program_only=configs._program_only,
                clip_extra=False)
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        # collect all vars
        for var in concrete_program.main_program.list_vars():
            all_vars.add(var)

    # save shared params
    if combine_params:
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
            paddle.static.save_vars(Executor(_current_expected_place()),
                                    dirname=model_path,
                                    vars=list(
                                        filter(paddle.fluid.io.is_persistable,
                                               all_vars)),
                                    filename=params_filename)
        # TODO: save property

1036 1037 1038 1039 1040 1041 1042
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1043 1044
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1045 1046
    # configure redundant information to proceed.
    #
1047 1048
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1049 1050
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1051 1052 1053 1054 1055 1056 1057 1058

    # "layer" can only be Layer or function or StaticFunction.

    contain_parameter = False
    for var in concrete_program.main_program.list_vars():
        contain_parameter |= isinstance(var, Parameter)

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1059 1060 1061 1062
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1063 1064 1065


@dygraph_only
1066
def load(path, **configs):
1067 1068 1069
    """
    :api_attr: imperative

1070 1071
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1072
    then performing inference or fine-tune training.
1073 1074

    .. note::
1075
        If you load model saved by ``paddle.static.save_inference_model`` ,
1076 1077
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1078
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1079 1080 1081 1082
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1083
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1084 1085
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1086 1087
            DO NOT use them. Default None.
            The following options are currently supported:
1088 1089 1090 1091
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1092 1093
            by default.

1094 1095 1096 1097 1098

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1099
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1100 1101 1102 1103

        .. code-block:: python

            import numpy as np
1104 1105 1106
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1107

1108 1109 1110
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1111

1112 1113
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1114

1115 1116 1117 1118
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1119

1120 1121 1122 1123
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1124

1125 1126 1127 1128 1129
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1130
                    super(LinearNet, self).__init__()
1131
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1132

1133
                @paddle.jit.to_static
1134 1135 1136
                def forward(self, x):
                    return self._linear(x)

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1148
            # 1. train & save model.
1149

1150
            # create network
1151 1152 1153 1154
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1155
            # create data loader
1156 1157 1158 1159 1160 1161
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1162

1163 1164
            # train
            train(layer, loader, loss_fn, adam)
1165

1166
            # save
1167 1168
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1169

1170
            # 2. load model
1171

1172
            # load
1173
            loaded_layer = paddle.jit.load(path)
1174 1175

            # inference
1176 1177 1178
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1179 1180

            # fine-tune
1181 1182 1183
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1184 1185


1186
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1187 1188 1189 1190

        .. code-block:: python

            import numpy as np
1191
            import paddle
1192
            import paddle.static as static
1193 1194
            import paddle.nn as nn
            import paddle.optimizer as opt
1195
            import paddle.nn.functional as F
1196

1197 1198 1199
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1200

1201 1202 1203 1204 1205 1206 1207
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1208

1209 1210 1211 1212
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1213

1214 1215
                def __len__(self):
                    return self.num_samples
1216

1217 1218
            paddle.enable_static()

1219 1220
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1221
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1222 1223
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1224

1225
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1226 1227
            optimizer.minimize(avg_loss)

1228 1229 1230
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1231

1232 1233 1234 1235 1236
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1237
                batch_size=BATCH_SIZE,
1238 1239
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1240
                return_list=False,
1241
                num_workers=2)
1242 1243 1244 1245

            # 1. train and save inference model
            for data in loader():
                exe.run(
1246
                    static.default_main_program(),
1247
                    feed=data,
1248 1249 1250
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1251
            paddle.fluid.io.save_inference_model(
1252 1253 1254
                model_path, ["image"], [pred], exe)

            # 2. load model
1255 1256

            # enable dygraph mode
1257 1258 1259 1260
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1261

1262 1263 1264
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1265 1266
            pred = fc(x)

1267
            # fine-tune
1268
            fc.train()
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1286
    """
1287 1288 1289 1290
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1291
    return TranslatedLayer._construct(model_path, config)
1292 1293


1294
@dygraph_only
Z
Zeng Jinle 已提交
1295 1296 1297 1298 1299
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1300
    assert isinstance(layer, Layer)
1301 1302 1303 1304 1305 1306 1307 1308 1309

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1310
        original_outputs = layer(*inputs)
1311 1312 1313 1314
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1315
        out_vars = extract_vars(outputs, err_tag='outputs')
1316

1317
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1318
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1319 1320 1321 1322 1323
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1324
    return original_outputs, program, feed_names, fetch_names, parameters
1325 1326 1327 1328


class TracedLayer(object):
    """
1329
    :api_attr: imperative
1330

1331 1332 1333 1334 1335
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1336 1337 1338 1339

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1340 1341

    All TracedLayer objects should not be created by constructor and should
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1353
        self._params = parameters
1354 1355 1356 1357 1358

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1359
            src_tensor = p.value().get_tensor()
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1383
        This method is the only allowed method to create TracedLayer object.
1384 1385 1386 1387
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1388
            layer (paddle.nn.Layer): the layer object to be traced.
1389 1390
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1391 1392

        Returns:
1393
            tuple: A tuple of 2 items, whose the first item is the output of
1394 1395
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1396

1397
        Examples:
1398 1399
            .. code-block:: python:

1400
                import paddle
1401

1402
                class ExampleLayer(paddle.nn.Layer):
1403 1404
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1405
                        self._fc = paddle.nn.Linear(3, 10)
1406 1407 1408 1409

                    def forward(self, input):
                        return self._fc(input)

1410

1411 1412 1413 1414 1415 1416
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1417

1418 1419
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1420

1421 1422
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1423

1424
        """
1425 1426 1427 1428
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1429 1430
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1431 1432 1433 1434 1435 1436 1437
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1438
            build_strategy (BuildStrategy, optional): build strategy of
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1449
                import paddle
1450

1451
                class ExampleLayer(paddle.nn.Layer):
1452 1453
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1454
                        self._fc = paddle.nn.Linear(3, 10)
1455 1456 1457 1458

                    def forward(self, input):
                        return self._fc(input)

1459 1460 1461 1462
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1463

1464 1465
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1466

1467 1468
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1469

1470 1471
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1472 1473 1474

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1475 1476 1477 1478 1479 1480 1481 1482
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1499
        if _non_static_mode():
1500
            for x, name in zip(inputs, self._feed_names):
1501
                feed_dict[name] = x.value().get_tensor()
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1522
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1523
        """
1524 1525
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1526

1527 1528 1529
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1530
        Args:
1531
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1532
            feed (list[int], optional): the input variable indices of the saved
1533
                inference model. If None, all input variables of the
1534 1535 1536 1537 1538 1539
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1540
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1541 1542

        Returns:
1543
            None
1544 1545 1546 1547 1548

        Examples:
            .. code-block:: python:

                import numpy as np
1549
                import paddle
1550

1551
                class ExampleLayer(paddle.nn.Layer):
1552 1553
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1554
                        self._fc = paddle.nn.Linear(3, 10)
1555 1556 1557 1558

                    def forward(self, input):
                        return self._fc(input)

1559 1560
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1561 1562
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1563

1564 1565
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1566

1567 1568 1569 1570
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1571
                                                    exe)
1572 1573 1574

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1575
        """
1576
        check_type(path, "path", str,
1577 1578 1579 1580 1581
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
1582 1583 1584
                check_type(
                    f, "each element of feed", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1585 1586 1587 1588
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
1589 1590 1591
                check_type(
                    f, "each element of fetch", int,
                    "fluid.dygraph.jit.TracedLayer.save_inference_model")
1592
        clip_extra = kwargs.get('clip_extra', False)
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1605
        from paddle.fluid.io import save_inference_model
1606 1607 1608 1609 1610

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1611
            return [all_vars[idx] for idx in partial_vars]
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1622 1623 1624
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1625 1626 1627 1628 1629 1630 1631 1632
            save_inference_model(dirname=dirname,
                                 feeded_var_names=feeded_var_names,
                                 target_vars=target_vars,
                                 executor=self._exe,
                                 main_program=self._program.clone(),
                                 model_filename=model_filename,
                                 params_filename=params_filename,
                                 clip_extra=clip_extra)