fusion_lstm_op.cc 24.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
23 24 25 26
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
35 36
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
37 38 39 40 41
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");

T
tensor-tang 已提交
42 43
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52 53 54 55

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
70 71
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
72 73
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
74 75 76 77 78 79 80
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");
T
tensor-tang 已提交
81 82 83 84 85 86
  PADDLE_ENFORCE_EQ(
      b_dims[1], (ctx->Attrs().Get<bool>("use_peepholes") ? 7 : 4) * frame_size,
      "The second dimension of Input(Bias) should be "
      "7 * %d if enable peepholes connection or"
      "4 * %d if disable peepholes",
      frame_size, frame_size);
T
tensor-tang 已提交
87

T
tensor-tang 已提交
88
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
89 90
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
91 92
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
93
  int xx_width;
T
tensor-tang 已提交
94
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
95 96 97
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
T
tensor-tang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                   "Output(BatchedInput) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                   "Output(BatchedHidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
                   "Output(BatchedCell) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                   "Output(ReorderedH0) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
                   "Output(ReorderedC0) of LSTM should not be null.");
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
111
  }
T
tensor-tang 已提交
112 113
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
114 115 116 117 118
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
119
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
120 121 122 123
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
124
  AddInput("X",
T
tensor-tang 已提交
125
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
126
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
127 128 129 130 131 132 133 134 135
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
136 137 138
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
139 140
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
141 142 143 144 145 146 147 148
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
149 150 151 152 153 154 155 156 157 158 159 160
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
161
  AddOutput("Hidden",
T
tensor-tang 已提交
162
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
163 164
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
165
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
166
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
167
  AddOutput("XX",
T
tensor-tang 已提交
168 169 170
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
171 172
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
173 174 175 176 177
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
178 179 180 181 182 183 184 185
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
186 187 188 189
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
208 209
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
210 211 212
)DOC");
}

T
tensor-tang 已提交
213
template <typename T>
T
tensor-tang 已提交
214
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
215
 public:
T
tensor-tang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

T
tensor-tang 已提交
233 234 235 236 237 238 239 240 241 242 243 244
#define INIT_BASE_INPUT_OUTPUT                        \
  auto* x = ctx.Input<LoDTensor>("X");                \
  auto* h0 = ctx.Input<Tensor>("H0");                 \
  auto* c0 = ctx.Input<Tensor>("C0");                 \
  auto* wx = ctx.Input<Tensor>("WeightX");            \
  auto* wh = ctx.Input<Tensor>("WeightH");            \
  auto* bias = ctx.Input<Tensor>("Bias");             \
  auto* xx = ctx.Output<LoDTensor>("XX");             \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");     \
  bool is_reverse = ctx.Attr<bool>("is_reverse");     \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");
T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253 254

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
255 256
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
257 258 259
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
260

T
tensor-tang 已提交
261
    auto x_lod = x->lod();
T
tensor-tang 已提交
262
    const int total_T = x_dims[0];
T
tensor-tang 已提交
263
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
264
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
265 266
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
267
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
268
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
269 270 271 272 273 274
    const T* wc_data = bias->data<T>() + D4;  // diagonal weight
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* hidden_out_data = hidden_out->mutable_data<T>(place);
    T* cell_out_data = cell_out->mutable_data<T>(place);

T
tensor-tang 已提交
275 276 277 278
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
    // for peephole only
T
tensor-tang 已提交
279 280 281 282 283 284
    Tensor checked_cell;
    T* checked_cell_data = nullptr;
    if (use_peepholes) {
      // w_ic * Ct-1, w_fc * Ct-1  // , w_oc * Ct => ih
      checked_cell_data = checked_cell.mutable_data<T>({2, D}, place);
    }
B
Brian Liu 已提交
285

T
tensor-tang 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
      hidden_out_data = hidden_out_data + offset;
      cell_out_data = cell_out_data + offset;
      xx_offset = -D4;
      gate_offset = -D;
    }

    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
      cell_out_data = cell_out_data + gate_offset;
    };
T
tensor-tang 已提交
302

T
tensor-tang 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
#define GEMM_WH_ADDON                                                \
  blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1), \
            prev_h_data, D, wh_data, D4, static_cast<T>(1), xx_data, D4)

#define GET_Ct                                           \
  /* C_t = C_t-1 * fgated + cand_gated * igated*/        \
  act_cand(D, xx_data, xx_data);                         \
  blas.VMUL(D, xx_data, xx_data + D, xx_data + D);       \
  blas.VMUL(D, prev_c_data, xx_data + D2, xx_data + D2); \
  blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data)

#define GET_Ht_AND_MOVE                                      \
  /* H_t = act_cell(C_t) * ogated */                         \
  act_cell(D, cell_out_data, xx_data + D2);                  \
  blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data); \
  /* get prev and move*/                                     \
  prev_h_data = hidden_out_data;                             \
  prev_c_data = cell_out_data;                               \
  move_step()

T
tensor-tang 已提交
323
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
324 325
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
326 327
      const T* prev_c_data = nullptr;
      const T* prev_h_data = nullptr;
T
tensor-tang 已提交
328 329
      int tstart = 0;
      if (h0_data) {
T
tensor-tang 已提交
330 331
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
T
tensor-tang 已提交
332
      } else {
T
tensor-tang 已提交
333 334
        // W_ch, W_ih, W_fh, W_oh
        act_gate(D, xx_data + D, xx_data + D);
T
tensor-tang 已提交
335
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
336
        // C_t = igated * cgated
T
tensor-tang 已提交
337
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
B
Brian Liu 已提交
338

T
tensor-tang 已提交
339
        // get outgated
B
Brian Liu 已提交
340
        if (use_peepholes) {
T
tensor-tang 已提交
341
          // put W_oc * C_t on igated
T
tensor-tang 已提交
342 343
          blas.VMUL(D, wc_data + D2, cell_out_data, xx_data + D);
          blas.VADD(D, xx_data + D, xx_data + D3, xx_data + D3);
B
Brian Liu 已提交
344
        }
T
tensor-tang 已提交
345
        act_gate(D, xx_data + D3, xx_data + D3);
T
tensor-tang 已提交
346
        GET_Ht_AND_MOVE;
B
Brian Liu 已提交
347
        tstart = 1;
T
tensor-tang 已提交
348
      }
B
Brian Liu 已提交
349

T
tensor-tang 已提交
350 351 352 353
      if (use_peepholes) {
        for (int step = tstart; step < seq_len; ++step) {
          GEMM_WH_ADDON;
          // get fgated and igated
B
Brian Liu 已提交
354 355
          blas.VMUL(D, wc_data, prev_c_data, checked_cell_data);
          blas.VMUL(D, wc_data + D, prev_c_data, checked_cell_data + D);
T
tensor-tang 已提交
356
          blas.VADD(D2, checked_cell_data, xx_data + D, xx_data + D);
B
Brian Liu 已提交
357
          act_gate(D2, xx_data + D, xx_data + D);
T
tensor-tang 已提交
358
          GET_Ct;
T
tensor-tang 已提交
359

T
tensor-tang 已提交
360
          // get ogated
T
tensor-tang 已提交
361 362
          blas.VMUL(D, wc_data + D2, cell_out_data, xx_data + D);
          blas.VADD(D, xx_data + D, xx_data + D3, xx_data + D3);
B
Brian Liu 已提交
363
          act_gate(D, xx_data + D3, xx_data + D3);
T
tensor-tang 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
          GET_Ht_AND_MOVE;
        }  // for seqlen
      } else {
        for (int step = tstart; step < seq_len; ++step) {
          GEMM_WH_ADDON;
          // W_ch, W_ih, W_fh, W_oh
          act_gate(D3, xx_data + D, xx_data + D);
          GET_Ct;
          GET_Ht_AND_MOVE;
        }  // for seqlen
      }
    }  // for batch
#undef GET_Ht_AND_MOVE
#undef GEMM_WH_ADDON
#undef GET_Ct
T
tensor-tang 已提交
379 380 381 382
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
383
    INIT_BASE_INPUT_OUTPUT
B
Brian Liu 已提交
384
    if (x->lod()[0].size() == 2) {  // batch size == 1
T
tensor-tang 已提交
385
      SeqCompute(ctx);
T
tensor-tang 已提交
386
      return;
T
tensor-tang 已提交
387 388 389 390
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC

T
tensor-tang 已提交
391 392 393 394 395
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
T
tensor-tang 已提交
396

T
tensor-tang 已提交
397 398
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
399
    const T* wh_data = wh->data<T>();
B
Brian Liu 已提交
400 401
    const T* bias_data = bias->data<T>();
    const T* wc_data = bias_data + D4;  // w_ic, w_fc, w_oc
T
tensor-tang 已提交
402 403 404 405 406 407 408
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
409

B
Brian Liu 已提交
410 411 412 413 414 415
    // use local variable
    framework::DDim check_dims({3, D});
    Tensor checked_cell;  // w_ic * Ct-1, w_fc * Ct-1, w_oc * Ct
    auto checked_cell_data =
        checked_cell.mutable_data<T>(check_dims, ctx.GetPlace());

T
tensor-tang 已提交
416
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
417 418
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
419 420 421 422
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
423 424
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
425 426 427
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
428
                                        bias->data<T>());
T
tensor-tang 已提交
429 430
    }

T
tensor-tang 已提交
431 432 433 434 435 436
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

B
Brian Liu 已提交
437 438 439 440 441 442 443 444 445 446 447 448
    T* prev_batch_h_data = nullptr;
    T* prev_batch_c_data = nullptr;
    T* cur_batch_in_data = batched_input_data;
    T* cur_batch_h_out_data = batched_h_out_data;
    T* cur_batch_c_out_data = batched_c_out_data;

    auto move_step = [&](int bs) {
      cur_batch_in_data += bs * D4;
      cur_batch_c_out_data += bs * D;
      cur_batch_h_out_data += bs * D;
    };

T
tensor-tang 已提交
449 450 451 452 453 454 455
    int tstart = 0;
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
B
Brian Liu 已提交
456 457
      prev_batch_h_data = reordered_h0_data;
      prev_batch_c_data = reordered_c0_data;
T
tensor-tang 已提交
458 459 460 461 462 463 464 465
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
B
Brian Liu 已提交
466 467 468 469 470 471 472 473 474 475
      // Compute with no H0/C0
      T* cur_in_data = cur_batch_in_data;
      T* cur_c_out_data = cur_batch_c_out_data;
      T* cur_h_out_data = cur_batch_h_out_data;

      // If step == 0 and there is no initialized hidden state, that is to say
      // the H0 is zeros. Then W_h * H_t-1 can be skiped

      for (int i = 0; i < max_bs; ++i) {  // iterate each data in 1st batch
        // ~C_t
T
tensor-tang 已提交
476
        act_cand(D, cur_in_data, cur_in_data);
B
Brian Liu 已提交
477 478 479 480 481 482 483 484 485 486

        if (use_peepholes) {
          // I_t, F_t
          act_gate(D2, cur_in_data + D, cur_in_data + D);
        } else {
          // I_t, F_t, O_t
          act_gate(D3, cur_in_data + D, cur_in_data + D);
        }

        // C_t = I_t * ~C_t
T
tensor-tang 已提交
487
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data);
B
Brian Liu 已提交
488 489 490 491 492 493 494 495 496 497

        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
          blas.VMUL(D, wc_data + D2, cur_c_out_data, checked_cell_data + D2);
          blas.VADD(D, cur_in_data + D3, checked_cell_data + D2,
                    cur_in_data + D3);
          // O_t
          act_gate(D, cur_in_data + D3, cur_in_data + D3);
        }

T
tensor-tang 已提交
498 499
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
B
Brian Liu 已提交
500
        // H_t = O_t * act_state(C_t)
T
tensor-tang 已提交
501 502
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

B
Brian Liu 已提交
503
        // move to next data in the same batch
T
tensor-tang 已提交
504 505 506 507
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
B
Brian Liu 已提交
508 509 510 511 512

      // move to data for next timestep
      prev_batch_h_data = cur_batch_h_out_data;
      prev_batch_c_data = cur_batch_c_out_data;
      move_step(max_bs);
T
tensor-tang 已提交
513
      tstart = 1;
T
tensor-tang 已提交
514
    }
B
Brian Liu 已提交
515

T
tensor-tang 已提交
516 517 518 519
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
B
Brian Liu 已提交
520
      // + W_h * H_t-1
T
tensor-tang 已提交
521
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast<T>(1),
B
Brian Liu 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
                prev_batch_h_data, D, wh_data, D4, static_cast<T>(1),
                cur_batch_in_data, D4);

      T* cur_in_data = cur_batch_in_data;
      T* cur_c_out_data = cur_batch_c_out_data;
      T* cur_h_out_data = cur_batch_h_out_data;
      T* prev_c_data = prev_batch_c_data;  // NULL if no C0 in step0
      T* prev_h_data = prev_batch_h_data;  // NULL if no H0 in step0
      auto next_data_in_batch = [&]() {
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
        prev_c_data = prev_c_data ? prev_c_data + D : nullptr;
        prev_h_data = prev_h_data ? prev_h_data + D : nullptr;
      };

      for (int i = 0; i < cur_bs; ++i) {  // iterate each data in same batch
        // ~C_t
T
tensor-tang 已提交
540
        act_cand(D, cur_in_data, cur_in_data);
B
Brian Liu 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

        if (use_peepholes) {
          // + W_ic|W_fc * C_t-1 for peephole connection
          blas.VMUL(D, wc_data, prev_c_data, checked_cell_data);
          blas.VMUL(D, wc_data + D, prev_c_data, checked_cell_data + D);
          blas.VADD(D2, cur_in_data + D, checked_cell_data, cur_in_data + D);
          // I_t, F_t
          act_gate(D2, cur_in_data + D, cur_in_data + D);
        } else {
          // I_t, F_t, O_t
          act_gate(D3, cur_in_data + D, cur_in_data + D);
        }

        // F_t * C_t-1
        blas.VMUL(D, cur_in_data + D2, prev_c_data, cur_in_data + D2);
        // I_t * ~C_t
T
tensor-tang 已提交
557
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D);
B
Brian Liu 已提交
558
        // C_t = F_t * C_t-1 + I_t * ~C_t
T
tensor-tang 已提交
559
        blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data);
B
Brian Liu 已提交
560 561 562 563 564 565 566 567 568 569

        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
          blas.VMUL(D, wc_data + D2, cur_c_out_data, checked_cell_data + D2);
          blas.VADD(D, cur_in_data + D3, checked_cell_data + D2,
                    cur_in_data + D3);
          // O_t
          act_gate(D, cur_in_data + D3, cur_in_data + D3);
        }

T
tensor-tang 已提交
570 571
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
B
Brian Liu 已提交
572
        // H_t = O_t * act_state(C_t)
T
tensor-tang 已提交
573 574
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

B
Brian Liu 已提交
575 576
        // move to next data in same batch
        next_data_in_batch();
T
tensor-tang 已提交
577
      }
B
Brian Liu 已提交
578 579 580 581
      // move to data for next timestep
      prev_batch_h_data = cur_batch_h_out_data;
      prev_batch_c_data = cur_batch_c_out_data;
      move_step(cur_bs);
T
tensor-tang 已提交
582 583 584
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
585 586 587 588
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
589
  }
T
tensor-tang 已提交
590

T
tensor-tang 已提交
591
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
592
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
593 594 595 596 597
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
598 599 600
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
601 602 603 604 605 606
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
607
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
608 609
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
610 611
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);