fusion_lstm_op.cc 24.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
19
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/platform/cpu_info.h"

T
tensor-tang 已提交
23 24 25 26
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
32 33 34
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
35 36
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
37 38 39 40 41
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");

T
tensor-tang 已提交
42 43
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52 53 54 55

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
70 71
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
72 73
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
74 75 76 77 78 79 80 81
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

B
Brian Liu 已提交
82 83
  auto use_peepholes = ctx->Attrs().Get<bool>("use_peepholes");
  PADDLE_ENFORCE_EQ(b_dims[1], (use_peepholes ? 7 : 4) * frame_size,
T
tensor-tang 已提交
84
                    "The second dimension of Input(Bias) should be "
B
Brian Liu 已提交
85 86 87
                    "7 * %d if enable peepholes connection or"
                    "4 * %d if disable peepholes",
                    frame_size, frame_size);
T
tensor-tang 已提交
88

T
tensor-tang 已提交
89
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
90 91
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
92 93
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
94
  int xx_width;
T
tensor-tang 已提交
95
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
96 97 98
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
T
tensor-tang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
                   "Output(BatchedInput) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
                   "Output(BatchedHidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
                   "Output(BatchedCell) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
                   "Output(ReorderedH0) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
                   "Output(ReorderedC0) of LSTM should not be null.");
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
112
  }
T
tensor-tang 已提交
113 114
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
115 116 117 118 119
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
120
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
121 122 123 124
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
125
  AddInput("X",
T
tensor-tang 已提交
126
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
127
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
128 129 130 131 132 133 134 135 136
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
137 138 139
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
140 141
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
142 143 144 145 146 147 148 149
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
150 151 152 153 154 155 156 157 158 159 160 161
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
162
  AddOutput("Hidden",
T
tensor-tang 已提交
163
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
164 165
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
166
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
167
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
168
  AddOutput("XX",
T
tensor-tang 已提交
169 170 171
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
172 173
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
174 175 176 177 178
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
179 180 181 182 183 184 185 186
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
187 188 189 190
  AddAttr<bool>("use_seq",
                "(bool, defalut: True) "
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
209 210
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
211 212 213
)DOC");
}

T
tensor-tang 已提交
214
template <typename T>
T
tensor-tang 已提交
215
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
216
 public:
T
tensor-tang 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#define INIT_VEC_FUNC                                                          \
  std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
  auto& act_gate_str = ctx.Attr<std::string>("gate_activation");               \
  auto& act_cell_str = ctx.Attr<std::string>("cell_activation");               \
  auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");          \
  if (platform::jit::MayIUse(platform::jit::avx)) {                            \
    math::VecActivations<T, platform::jit::avx> act_functor;                   \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  } else {                                                                     \
    math::VecActivations<T, platform::jit::isa_any> act_functor;               \
    act_gate = act_functor(act_gate_str);                                      \
    act_cell = act_functor(act_cell_str);                                      \
    act_cand = act_functor(act_cand_str);                                      \
  }

B
Brian Liu 已提交
234 235 236 237 238 239 240 241 242 243 244
#define INIT_BASE_INPUT_OUTPUT                          \
  auto* x = ctx.Input<LoDTensor>("X");                  \
  auto* h0 = ctx.Input<Tensor>("H0");                   \
  auto* c0 = ctx.Input<Tensor>("C0");                   \
  auto* wx = ctx.Input<Tensor>("WeightX");              \
  auto* wh = ctx.Input<Tensor>("WeightH");              \
  auto* bias = ctx.Input<Tensor>("Bias");               \
  auto* xx = ctx.Output<LoDTensor>("XX");               \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");   \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");       \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes"); \
T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253 254 255
  bool is_reverse = ctx.Attr<bool>("is_reverse");

#define INIT_BASE_SIZES                  \
  auto x_dims = x->dims();   /* T x M*/  \
  auto wh_dims = wh->dims(); /* D x 4D*/ \
  const int M = x_dims[1];               \
  const int D = wh_dims[0];              \
  const int D2 = D * 2;                  \
  const int D3 = D * 3;                  \
  const int D4 = wh_dims[1];

T
tensor-tang 已提交
256 257
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
T
tensor-tang 已提交
258 259 260
    INIT_BASE_INPUT_OUTPUT
    INIT_BASE_SIZES
    INIT_VEC_FUNC
T
tensor-tang 已提交
261

T
tensor-tang 已提交
262
    auto x_lod = x->lod();
T
tensor-tang 已提交
263
    const int total_T = x_dims[0];
T
tensor-tang 已提交
264
    const int N = x_lod[0].size() - 1;  // batch size
T
tensor-tang 已提交
265 266

    const T* x_data = x->data<T>();
T
tensor-tang 已提交
267 268
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
B
Brian Liu 已提交
269 270
    const T* bias_data = bias->data<T>();
    const T* wc_data = bias_data + D4;  // w_ic, w_fc, w_oc
T
tensor-tang 已提交
271
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
272
    const T* wh_data = wh->data<T>();
B
Brian Liu 已提交
273

T
tensor-tang 已提交
274
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
275 276
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
277

B
Brian Liu 已提交
278 279 280 281 282 283
    // use local variable
    framework::DDim check_dims({3, D});
    Tensor checked_cell;  // w_ic * Ct-1, w_fc * Ct-1, w_oc * Ct
    auto checked_cell_data =
        checked_cell.mutable_data<T>(check_dims, ctx.GetPlace());

T
tensor-tang 已提交
284
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
285
    math::FCCompute<DeviceContext, T>(blas, total_T, D4, M, x_data, wx_data,
T
tensor-tang 已提交
286
                                      xx_data, bias->data<T>());
T
tensor-tang 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
      hidden_out_data = hidden_out_data + offset;
      cell_out_data = cell_out_data + offset;
      xx_offset = -D4;
      gate_offset = -D;
    }

    auto move_step = [&]() {
      xx_data = xx_data + xx_offset;
      hidden_out_data = hidden_out_data + gate_offset;
      cell_out_data = cell_out_data + gate_offset;
    };
T
tensor-tang 已提交
303 304

    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
305 306
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
T
tensor-tang 已提交
307 308
      const T* prev_c_data = nullptr;
      const T* prev_h_data = nullptr;
B
Brian Liu 已提交
309

T
tensor-tang 已提交
310 311
      int tstart = 0;
      if (h0_data) {
T
tensor-tang 已提交
312 313
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
T
tensor-tang 已提交
314
      } else {
B
Brian Liu 已提交
315 316 317 318
        // If step == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros. Then W_h * H_t-1 can be skipped

        // ~C_t
T
tensor-tang 已提交
319
        act_cand(D, xx_data, xx_data);
B
Brian Liu 已提交
320 321 322 323 324 325 326 327
        if (use_peepholes) {
          // I_t, F_t
          act_gate(D2, xx_data + D, xx_data + D);
        } else {
          // I_t, F_t, O_t
          act_gate(D3, xx_data + D, xx_data + D);
        }
        // C_t = I_t * ~C_t
T
tensor-tang 已提交
328
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
B
Brian Liu 已提交
329 330 331 332 333 334 335 336 337

        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
          blas.VMUL(D, wc_data + D2, cell_out_data, checked_cell_data + D2);
          blas.VADD(D, xx_data + D3, checked_cell_data + D2, xx_data + D3);
          // O_t
          act_gate(D, xx_data + D3, xx_data + D3);
        }

T
tensor-tang 已提交
338
        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
339
        act_cell(D, cell_out_data, xx_data + D2);
B
Brian Liu 已提交
340
        // H_t = O_t * act_state(C_t)
T
tensor-tang 已提交
341 342 343
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
344 345
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
346

B
Brian Liu 已提交
347
        tstart = 1;
T
tensor-tang 已提交
348
        move_step();
T
tensor-tang 已提交
349
      }
B
Brian Liu 已提交
350

T
tensor-tang 已提交
351
      for (int step = tstart; step < seq_len; ++step) {
B
Brian Liu 已提交
352
        // + W_h * H_t-1
T
tensor-tang 已提交
353
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
T
tensor-tang 已提交
354
                  prev_h_data, D, wh_data, D4, static_cast<T>(1), xx_data, D4);
T
tensor-tang 已提交
355

B
Brian Liu 已提交
356
        // ~C_t
T
tensor-tang 已提交
357
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
358

B
Brian Liu 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371
        if (use_peepholes) {
          // + W_ic|W_fc * C_t-1 for peephole connection
          blas.VMUL(D, wc_data, prev_c_data, checked_cell_data);
          blas.VMUL(D, wc_data + D, prev_c_data, checked_cell_data + D);
          blas.VADD(D2, xx_data + D, checked_cell_data, xx_data + D);
          // I_t, F_t
          act_gate(D2, xx_data + D, xx_data + D);
        } else {
          // I_t, F_t, O_t
          act_gate(D3, xx_data + D, xx_data + D);
        }

        // F_t * C_t-1
T
tensor-tang 已提交
372
        blas.VMUL(D, xx_data + D2, prev_c_data, xx_data + D2);
B
Brian Liu 已提交
373
        // I_t * ~C_t
T
tensor-tang 已提交
374
        blas.VMUL(D, xx_data, xx_data + D, xx_data + D);
B
Brian Liu 已提交
375
        // C_t = F_t * C_t-1 + I_t * ~C_t
T
tensor-tang 已提交
376 377
        blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);

B
Brian Liu 已提交
378 379 380 381 382 383 384 385
        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
          blas.VMUL(D, wc_data + D2, cell_out_data, checked_cell_data + D2);
          blas.VADD(D, xx_data + D3, checked_cell_data + D2, xx_data + D3);
          // O_t
          act_gate(D, xx_data + D3, xx_data + D3);
        }

T
tensor-tang 已提交
386
        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
387
        act_cell(D, cell_out_data, xx_data + D2);
B
Brian Liu 已提交
388
        // H_t = O_t * act_state(C_t)
T
tensor-tang 已提交
389 390 391
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
T
tensor-tang 已提交
392 393
        prev_h_data = hidden_out_data;
        prev_c_data = cell_out_data;
T
tensor-tang 已提交
394

T
tensor-tang 已提交
395
        move_step();
B
Brian Liu 已提交
396 397
      }  // for each step in batch
    }    // for each batch
T
tensor-tang 已提交
398 399 400 401
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
402
    INIT_BASE_INPUT_OUTPUT
B
Brian Liu 已提交
403
    if (x->lod()[0].size() == 2) {  // batch size == 1
T
tensor-tang 已提交
404
      SeqCompute(ctx);
T
tensor-tang 已提交
405
      return;
T
tensor-tang 已提交
406 407 408 409
    }
    INIT_BASE_SIZES
    INIT_VEC_FUNC

T
tensor-tang 已提交
410 411 412 413 414
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
T
tensor-tang 已提交
415

T
tensor-tang 已提交
416 417
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
418
    const T* wh_data = wh->data<T>();
B
Brian Liu 已提交
419 420
    const T* bias_data = bias->data<T>();
    const T* wc_data = bias_data + D4;  // w_ic, w_fc, w_oc
T
tensor-tang 已提交
421 422 423 424 425 426 427
    auto place = ctx.GetPlace();
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
428

B
Brian Liu 已提交
429 430 431 432 433 434
    // use local variable
    framework::DDim check_dims({3, D});
    Tensor checked_cell;  // w_ic * Ct-1, w_fc * Ct-1, w_oc * Ct
    auto checked_cell_data =
        checked_cell.mutable_data<T>(check_dims, ctx.GetPlace());

T
tensor-tang 已提交
435
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
436 437
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T
tensor-tang 已提交
438 439 440 441
    if (M > D4) {
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                        xx_data, bias->data<T>());
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
442 443
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
444 445 446
      batched_input->set_lod(xx->lod());
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, xx_data,
                                        wx_data, batched_input_data,
447
                                        bias->data<T>());
T
tensor-tang 已提交
448 449
    }

T
tensor-tang 已提交
450 451 452 453 454 455
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

B
Brian Liu 已提交
456 457 458 459 460 461 462 463 464 465 466 467
    T* prev_batch_h_data = nullptr;
    T* prev_batch_c_data = nullptr;
    T* cur_batch_in_data = batched_input_data;
    T* cur_batch_h_out_data = batched_h_out_data;
    T* cur_batch_c_out_data = batched_c_out_data;

    auto move_step = [&](int bs) {
      cur_batch_in_data += bs * D4;
      cur_batch_c_out_data += bs * D;
      cur_batch_h_out_data += bs * D;
    };

T
tensor-tang 已提交
468 469 470 471 472 473 474
    int tstart = 0;
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
B
Brian Liu 已提交
475 476
      prev_batch_h_data = reordered_h0_data;
      prev_batch_c_data = reordered_c0_data;
T
tensor-tang 已提交
477 478 479 480 481 482 483 484
      size_t sz = sizeof(T) * D;
      for (int i = 0; i < max_bs; ++i) {
        std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz);
        std::memcpy(reordered_c0_data, c0_data + seq_order[i] * D, sz);
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
B
Brian Liu 已提交
485 486 487 488 489 490 491 492 493 494
      // Compute with no H0/C0
      T* cur_in_data = cur_batch_in_data;
      T* cur_c_out_data = cur_batch_c_out_data;
      T* cur_h_out_data = cur_batch_h_out_data;

      // If step == 0 and there is no initialized hidden state, that is to say
      // the H0 is zeros. Then W_h * H_t-1 can be skiped

      for (int i = 0; i < max_bs; ++i) {  // iterate each data in 1st batch
        // ~C_t
T
tensor-tang 已提交
495
        act_cand(D, cur_in_data, cur_in_data);
B
Brian Liu 已提交
496 497 498 499 500 501 502 503 504 505

        if (use_peepholes) {
          // I_t, F_t
          act_gate(D2, cur_in_data + D, cur_in_data + D);
        } else {
          // I_t, F_t, O_t
          act_gate(D3, cur_in_data + D, cur_in_data + D);
        }

        // C_t = I_t * ~C_t
T
tensor-tang 已提交
506
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_c_out_data);
B
Brian Liu 已提交
507 508 509 510 511 512 513 514 515 516

        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
          blas.VMUL(D, wc_data + D2, cur_c_out_data, checked_cell_data + D2);
          blas.VADD(D, cur_in_data + D3, checked_cell_data + D2,
                    cur_in_data + D3);
          // O_t
          act_gate(D, cur_in_data + D3, cur_in_data + D3);
        }

T
tensor-tang 已提交
517 518
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
B
Brian Liu 已提交
519
        // H_t = O_t * act_state(C_t)
T
tensor-tang 已提交
520 521
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

B
Brian Liu 已提交
522
        // move to next data in the same batch
T
tensor-tang 已提交
523 524 525 526
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
B
Brian Liu 已提交
527 528 529 530 531

      // move to data for next timestep
      prev_batch_h_data = cur_batch_h_out_data;
      prev_batch_c_data = cur_batch_c_out_data;
      move_step(max_bs);
T
tensor-tang 已提交
532
      tstart = 1;
T
tensor-tang 已提交
533
    }
B
Brian Liu 已提交
534

T
tensor-tang 已提交
535 536 537 538
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
B
Brian Liu 已提交
539
      // + W_h * H_t-1
T
tensor-tang 已提交
540
      blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D4, D, static_cast<T>(1),
B
Brian Liu 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
                prev_batch_h_data, D, wh_data, D4, static_cast<T>(1),
                cur_batch_in_data, D4);

      T* cur_in_data = cur_batch_in_data;
      T* cur_c_out_data = cur_batch_c_out_data;
      T* cur_h_out_data = cur_batch_h_out_data;
      T* prev_c_data = prev_batch_c_data;  // NULL if no C0 in step0
      T* prev_h_data = prev_batch_h_data;  // NULL if no H0 in step0
      auto next_data_in_batch = [&]() {
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
        prev_c_data = prev_c_data ? prev_c_data + D : nullptr;
        prev_h_data = prev_h_data ? prev_h_data + D : nullptr;
      };

      for (int i = 0; i < cur_bs; ++i) {  // iterate each data in same batch
        // ~C_t
T
tensor-tang 已提交
559
        act_cand(D, cur_in_data, cur_in_data);
B
Brian Liu 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

        if (use_peepholes) {
          // + W_ic|W_fc * C_t-1 for peephole connection
          blas.VMUL(D, wc_data, prev_c_data, checked_cell_data);
          blas.VMUL(D, wc_data + D, prev_c_data, checked_cell_data + D);
          blas.VADD(D2, cur_in_data + D, checked_cell_data, cur_in_data + D);
          // I_t, F_t
          act_gate(D2, cur_in_data + D, cur_in_data + D);
        } else {
          // I_t, F_t, O_t
          act_gate(D3, cur_in_data + D, cur_in_data + D);
        }

        // F_t * C_t-1
        blas.VMUL(D, cur_in_data + D2, prev_c_data, cur_in_data + D2);
        // I_t * ~C_t
T
tensor-tang 已提交
576
        blas.VMUL(D, cur_in_data, cur_in_data + D, cur_in_data + D);
B
Brian Liu 已提交
577
        // C_t = F_t * C_t-1 + I_t * ~C_t
T
tensor-tang 已提交
578
        blas.VADD(D, cur_in_data + D, cur_in_data + D2, cur_c_out_data);
B
Brian Liu 已提交
579 580 581 582 583 584 585 586 587 588

        if (use_peepholes) {
          // + W_oc * C_t for peephole connection
          blas.VMUL(D, wc_data + D2, cur_c_out_data, checked_cell_data + D2);
          blas.VADD(D, cur_in_data + D3, checked_cell_data + D2,
                    cur_in_data + D3);
          // O_t
          act_gate(D, cur_in_data + D3, cur_in_data + D3);
        }

T
tensor-tang 已提交
589 590
        // hidden out= act_state(cellout) * outgate
        act_cell(D, cur_c_out_data, cur_in_data + D2);
B
Brian Liu 已提交
591
        // H_t = O_t * act_state(C_t)
T
tensor-tang 已提交
592 593
        blas.VMUL(D, cur_in_data + D2, cur_in_data + D3, cur_h_out_data);

B
Brian Liu 已提交
594 595
        // move to next data in same batch
        next_data_in_batch();
T
tensor-tang 已提交
596
      }
B
Brian Liu 已提交
597 598 599 600
      // move to data for next timestep
      prev_batch_h_data = cur_batch_h_out_data;
      prev_batch_c_data = cur_batch_c_out_data;
      move_step(cur_bs);
T
tensor-tang 已提交
601 602 603
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
604 605 606 607
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
608
  }
T
tensor-tang 已提交
609

T
tensor-tang 已提交
610
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
611
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
612 613 614 615 616
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
617 618 619
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
T
tensor-tang 已提交
620 621 622 623 624 625
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
626
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
627 628
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
629 630
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);