fusion_lstm_op.cc 19.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fusion_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/detail/activation_functions.h"
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
T
tensor-tang 已提交
23 24 25
#include "paddle/fluid/platform/cpu_info.h"

DEFINE_bool(seq_mode, true, "Use sequence mode");
T
tensor-tang 已提交
26 27 28 29 30

namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
31 32 33 34 35
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightX"),
                 "Input(WeightX) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("WeightH"),
                 "Input(WeightH) of LSTM should not be null.");
T
tensor-tang 已提交
36 37 38
  PADDLE_ENFORCE(ctx->HasInput("Bias"),
                 "Input(Bias) of LSTM should not be null.");

T
tensor-tang 已提交
39 40
  PADDLE_ENFORCE(ctx->HasOutput("XX"),
                 "Output(XX) of LSTM should not be null.");
T
tensor-tang 已提交
41 42 43 44
  PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                 "Output(Hidden) of LSTM should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Cell"),
                 "Output(Cell) of LSTM should not be null.");
T
tensor-tang 已提交
45 46
  PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"),
                 "Output(BatchedGate) of LSTM should not be null.");
T
tensor-tang 已提交
47
  PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
T
tensor-tang 已提交
48
                 "Output(BatchedGate) of LSTM should not be null.");
T
tensor-tang 已提交
49

T
tensor-tang 已提交
50 51
  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
T
tensor-tang 已提交
52 53 54 55 56 57 58 59 60 61 62 63

  if (ctx->HasInput("H0")) {
    PADDLE_ENFORCE(ctx->HasInput("C0"),
                   "Input(Cell) and Input(Hidden) of LSTM should not "
                   "be null at the same time.");
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
                    "The rank of Input(WeightX) should be 2.");
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
                    "The first dimension of Input(WeightX) "
                    "should be %d.",
                    x_dims[1]);

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
                    "The rank of Input(WeightH) should be 2.");
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
                    "The first dimension of Input(WeightH) "
T
tensor-tang 已提交
78 79
                    "should be %d.",
                    frame_size);
T
tensor-tang 已提交
80 81
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
                    "The second dimension of Input(WeightH) "
T
tensor-tang 已提交
82 83 84 85 86 87 88 89
                    "should be 4 * %d.",
                    frame_size);

  auto b_dims = ctx->GetInputDim("Bias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    "The first dimension of Input(Bias) should be 1.");

T
tensor-tang 已提交
90 91 92 93 94 95
  PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_peepholes"),
                 "Do not support peephole yet.");
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                    "The second dimension of Input(Bias) should be "
                    "4 * %d if disable peepholes connection",
                    frame_size);
T
tensor-tang 已提交
96

T
tensor-tang 已提交
97
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
98 99
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
100
  ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]});
T
tensor-tang 已提交
101
  ctx->SetOutputDim("BatchCellPreAct", out_dims);
T
tensor-tang 已提交
102 103 104
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");

T
tensor-tang 已提交
105 106 107 108 109 110
  int xx_width;
  if (FLAGS_seq_mode) {
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
  }
T
tensor-tang 已提交
111 112
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
113 114 115 116 117
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
T
tensor-tang 已提交
118
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
T
tensor-tang 已提交
119 120 121 122
      ctx.device_context());
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
123
  AddInput("X",
T
tensor-tang 已提交
124
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
125
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
126 127 128 129 130 131 132 133 134
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
135 136 137
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
138 139
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
140 141 142 143 144 145 146 147
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
148 149 150 151 152 153 154 155 156 157 158 159
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
160
  AddOutput("Hidden",
T
tensor-tang 已提交
161
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
162 163
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
164
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
165
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
166
  AddOutput("XX",
T
tensor-tang 已提交
167 168 169
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
170 171
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
172 173
  AddOutput("BatchedGate", "(LoDTensor) (same as LSTMOp).").AsIntermediate();
  AddOutput("BatchCellPreAct", "(LoDTensor) (same as LSTMOp).")
T
tensor-tang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      .AsIntermediate();
  AddAttr<bool>("use_peepholes",
                "(bool, defalut: True) "
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
                "(bool, defalut: False) "
                "whether to compute reversed LSTM.")
      .SetDefault(false);
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddComment(R"DOC(
T
tensor-tang 已提交
201 202
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
203 204 205 206 207 208 209 210 211 212
)DOC");
}

template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
T
tensor-tang 已提交
213
  // TODO(TJ): check mem copy perf
T
tensor-tang 已提交
214 215 216
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
}

T
tensor-tang 已提交
217
template <typename T>
T
tensor-tang 已提交
218
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
219
 public:
T
tensor-tang 已提交
220 221 222
  void SeqCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = paddle::platform::CPUDeviceContext;
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
223 224
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
T
tensor-tang 已提交
225 226 227 228 229
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* xx = ctx.Output<LoDTensor>("XX");
T
tensor-tang 已提交
230 231
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
T
tensor-tang 已提交
232

T
tensor-tang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }

T
tensor-tang 已提交
249 250 251 252 253 254 255 256
    auto x_lod = x->lod();
    auto x_dims = x->dims();            // T x M
    auto wh_dims = wh->dims();          // D x 4D
    const int N = x_lod[0].size() - 1;  // batch size
    const int M = x_dims[1];            // x frame size
    const int D = wh_dims[0];
    const int D2 = D * 2;
    const int D3 = D * 3;
T
tensor-tang 已提交
257 258 259
    const int D4 = wh_dims[1];

    const T* x_data = x->data<T>();
T
tensor-tang 已提交
260 261
    const T* h0_data = h0 ? h0->data<T>() : NULL;
    const T* c0_data = c0 ? c0->data<T>() : NULL;
T
tensor-tang 已提交
262
    const T* wx_data = wx->data<T>();
T
tensor-tang 已提交
263
    const T* wh_data = wh->data<T>();
T
tensor-tang 已提交
264
    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
265 266
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
267 268 269 270

    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    math::FCCompute<DeviceContext, T>(blas, x_dims[0], D4, M, x_data, wx_data,
                                      xx_data, bias->data<T>());
T
tensor-tang 已提交
271 272 273 274 275 276 277 278 279 280 281

    for (int i = 0; i < N; ++i) {
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
      const T* prev_cell_data = NULL;
      const T* prev_hidden_data = NULL;
      int tstart = 0;
      if (h0_data) {
        prev_hidden_data = h0_data + i * D;
        prev_cell_data = c0_data + i * D;
      } else {
        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
282 283
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
284 285 286
        // cell out= input*tilde
        blas.VMUL(D, xx_data, xx_data + D, cell_out_data);
        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
287
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
        prev_hidden_data = hidden_out_data;
        prev_cell_data = cell_out_data;
        tstart = 1;

        // move offset
        xx_data = xx_data + D4;
        hidden_out_data = hidden_out_data + D;
        cell_out_data = cell_out_data + D;
      }
      for (int step = tstart; step < seq_len; ++step) {
        blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                  prev_hidden_data, D, wh_data, D4, static_cast<T>(1), xx_data,
                  D4);

        // W_ch, W_ih, W_fh, W_oh
T
tensor-tang 已提交
306 307
        act_gate(D3, xx_data + D, xx_data + D);
        act_cand(D, xx_data, xx_data);
T
tensor-tang 已提交
308 309 310 311 312 313 314 315 316 317 318

        // a = forget * prev_cell
        blas.VMUL(D, xx_data + D2, prev_cell_data, xx_data + D2);

        // b = input * tilde
        blas.VMUL(D, xx_data, xx_data + D, xx_data + D);

        // cell out= a+b
        blas.VADD(D, xx_data + D, xx_data + D2, cell_out_data);

        // hidden out= act_state(cellout) * outgate
T
tensor-tang 已提交
319
        act_cell(D, cell_out_data, xx_data + D2);
T
tensor-tang 已提交
320 321 322 323 324 325 326 327 328 329 330 331
        blas.VMUL(D, xx_data + D2, xx_data + D3, hidden_out_data);

        // prev
        prev_hidden_data = hidden_out_data;
        prev_cell_data = cell_out_data;

        // move offset
        xx_data = xx_data + D4;
        hidden_out_data = hidden_out_data + D;
        cell_out_data = cell_out_data + D;
      }
    }
T
tensor-tang 已提交
332 333 334 335
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
    using DeviceContext = platform::CPUDeviceContext;
T
tensor-tang 已提交
336
    auto* x = ctx.Input<LoDTensor>("X");
T
tensor-tang 已提交
337 338
    auto* wx = ctx.Input<Tensor>("WeightX");
    auto* wh = ctx.Input<Tensor>("WeightH");
T
tensor-tang 已提交
339 340 341 342
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

T
tensor-tang 已提交
343 344
    auto* xx = ctx.Output<LoDTensor>("XX");
    auto* batched_gate = ctx.Output<LoDTensor>("BatchedGate");
T
tensor-tang 已提交
345 346
    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
T
tensor-tang 已提交
347 348 349 350 351
    bool is_reverse = ctx.Attr<bool>("is_reverse");

    T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
    T* batched_gate_data = batched_gate->mutable_data<T>(ctx.GetPlace());
    hidden_out->mutable_data<T>(ctx.GetPlace());
T
tensor-tang 已提交
352 353
    cell_out->mutable_data<T>(ctx.GetPlace());

T
tensor-tang 已提交
354 355 356 357 358
    const T* x_data = x->data<T>();
    const T* wx_data = wx->data<T>();
    auto x_dims = x->dims();
    auto wx_dims = wx->dims();

T
tensor-tang 已提交
359
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
360 361 362
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    if (x_dims[1] > wx_dims[1]) {
363 364 365
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                        x_data, wx_data, xx_data,
                                        bias->data<T>());
T
tensor-tang 已提交
366 367 368
      to_batch(dev_ctx, *xx, batched_gate, true, is_reverse);
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
369
      batched_gate->set_lod(xx->lod());
370 371 372
      math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
                                        xx_data, wx_data, batched_gate_data,
                                        bias->data<T>());
T
tensor-tang 已提交
373 374
    }

T
tensor-tang 已提交
375 376
    int frame_size = static_cast<int>(wx_dims[1] / 4);
    framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
377
    math::LstmMetaValue<T> lstm_value;
T
tensor-tang 已提交
378 379 380 381
    // no peephole
    lstm_value.check_ig = nullptr;
    lstm_value.check_fg = nullptr;
    lstm_value.check_og = nullptr;
T
tensor-tang 已提交
382 383 384
    lstm_value.prev_state_value = nullptr;
    Tensor ordered_c0;

T
tensor-tang 已提交
385
    framework::Vector<size_t> order(batched_gate->lod()[2]);
T
tensor-tang 已提交
386 387 388 389 390

    if (cell_t0) {
      // Since the batch computing for LSTM reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
T
tensor-tang 已提交
391 392
      ReorderInitState<DeviceContext, T>(dev_ctx, *cell_t0, order, &ordered_c0,
                                         true);
T
tensor-tang 已提交
393 394 395 396 397 398
      lstm_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
    LoDTensor batch_hidden, batch_cell;
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
T
tensor-tang 已提交
399 400 401
    batch_hidden.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell.mutable_data<T>(out_dims, ctx.GetPlace());
    batch_cell_pre_act->mutable_data<T>(out_dims, ctx.GetPlace());
T
tensor-tang 已提交
402

T
tensor-tang 已提交
403 404
    auto batch_starts = batched_gate->lod()[0];
    size_t max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
405 406 407 408 409 410 411
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));

T
tensor-tang 已提交
412
    for (size_t n = 0; n < max_seq_len; n++) {
T
tensor-tang 已提交
413 414 415
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

T
tensor-tang 已提交
416
      Tensor gate_t = batched_gate->Slice(bstart, bend);
T
tensor-tang 已提交
417 418 419 420 421 422 423 424 425 426
      Tensor out_t = batch_hidden.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end);
T
tensor-tang 已提交
427 428
        // TODO(TJ): use gemm directly
        blas.MatMul(pre_hidden_t, false, *wh, false, static_cast<T>(1.0),
T
tensor-tang 已提交
429 430
                    &gate_t, static_cast<T>(1.0));
      } else if (hidden_t0) {
T
tensor-tang 已提交
431
        // TODO(TJ): move h0 outside for
T
tensor-tang 已提交
432 433 434 435 436 437 438 439
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTM reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
        Tensor ordered_h0;
T
tensor-tang 已提交
440
        ReorderInitState<DeviceContext, T>(dev_ctx, *hidden_t0, order,
T
tensor-tang 已提交
441
                                           &ordered_h0, true);
T
tensor-tang 已提交
442 443 444
        // TODO(TJ): use gemm directly
        blas.MatMul(ordered_h0, false, *wh, false, static_cast<T>(1.0), &gate_t,
                    static_cast<T>(1.0));
T
tensor-tang 已提交
445 446 447 448 449 450 451
      }

      lstm_value.gate_value = gate_t.data<T>();
      lstm_value.output_value = out_t.data<T>();
      lstm_value.state_value = cell_t.data<T>();
      lstm_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
T
tensor-tang 已提交
452 453
          dev_ctx, lstm_value, frame_size, cur_batch_size, gate_act, cell_act,
          cand_act);
T
tensor-tang 已提交
454 455 456 457
      lstm_value.prev_state_value = lstm_value.state_value;
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
458
    batch_hidden.set_lod(batched_gate->lod());
T
tensor-tang 已提交
459
    // restore the output hidden in LoDTensor from the batch hidden
T
tensor-tang 已提交
460
    to_seq(dev_ctx, batch_hidden, hidden_out);
T
tensor-tang 已提交
461

T
tensor-tang 已提交
462
    batch_cell.set_lod(batched_gate->lod());
T
tensor-tang 已提交
463
    // restore the output cell state in LoDTensor from the batch cell
T
tensor-tang 已提交
464
    to_seq(dev_ctx, batch_cell, cell_out);
T
tensor-tang 已提交
465
  }
T
tensor-tang 已提交
466 467 468 469 470 471 472
  void Compute(const framework::ExecutionContext& ctx) const override {
    if (FLAGS_seq_mode) {
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
473 474 475 476 477 478
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
tensor-tang 已提交
479
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker,
T
tensor-tang 已提交
480 481
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
482 483
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);