data_set.cc 47.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
M
malin10 已提交
16

17
#include <algorithm>
D
dongdaxiang 已提交
18
#include <random>
19
#include <unordered_map>
20
#include <unordered_set>
M
malin10 已提交
21

22 23 24
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
25
#include "paddle/fluid/framework/data_feed_factory.h"
26
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
27
#include "paddle/fluid/framework/io/fs.h"
H
hutuxian 已提交
28
#include "paddle/fluid/platform/monitor.h"
29
#include "paddle/fluid/platform/timer.h"
30
#include "xxhash.h"  // NOLINT
31

D
dongdaxiang 已提交
32 33 34 35 36
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

H
hutuxian 已提交
37
USE_INT_STAT(STAT_total_feasign_num_in_mem);
38 39 40
namespace paddle {
namespace framework {

X
xjqbest 已提交
41
// constructor
42
template <typename T>
D
dongdaxiang 已提交
43
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
44
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
45
  thread_num_ = 1;
46
  trainer_num_ = 1;
J
jiaqi 已提交
47
  channel_num_ = 1;
48
  file_idx_ = 0;
H
hutuxian 已提交
49
  total_fea_num_ = 0;
J
jiaqi 已提交
50
  cur_channel_ = 0;
51 52
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
53
  merge_by_insid_ = false;
54 55
  merge_by_sid_ = true;
  enable_pv_merge_ = false;
56
  merge_size_ = 2;
57 58
  parse_ins_id_ = false;
  parse_content_ = false;
59
  parse_logkey_ = false;
60
  preload_thread_num_ = 0;
61
  global_index_ = 0;
D
dongdaxiang 已提交
62
}
63

X
xjqbest 已提交
64
// set filelist, file_idx_ will reset to zero.
65 66
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
67
  VLOG(3) << "filelist size: " << filelist.size();
68
  filelist_ = filelist;
69
  file_idx_ = 0;
70 71
}

X
xjqbest 已提交
72
// set expect thread num. actually it may change
73 74
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
75
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
76 77 78
  thread_num_ = thread_num;
}

X
xjqbest 已提交
79 80 81
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
82
template <typename T>
X
xujiaqi01 已提交
83 84
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
85 86
}

X
xjqbest 已提交
87 88 89 90 91 92 93 94
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

95 96 97
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
98 99
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
100
  std::string cmd = std::string("$HADOOP_HOME/bin/hadoop fs");
101 102
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
103
  cmd += " -Ddfs.client.block.write.retries=15 -Ddfs.rpc.timeout=500000";
104
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
105
}
106

107 108 109 110 111 112 113 114 115 116
template <typename T>
void DatasetImpl<T>::SetDownloadCmd(const std::string& download_cmd) {
  paddle::framework::set_download_command(download_cmd);
}

template <typename T>
std::string DatasetImpl<T>::GetDownloadCmd() {
  return paddle::framework::download_cmd();
}

117 118
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
119 120
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
121 122
}

123
template <typename T>
J
jiaqi 已提交
124 125 126 127
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

128 129 130 131 132 133 134 135 136 137
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

138 139 140 141 142
template <typename T>
void DatasetImpl<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

143
template <typename T>
144
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
145
  merge_by_insid_ = true;
146
  parse_ins_id_ = true;
147
  merge_size_ = merge_size;
148 149
}

150 151 152 153 154 155 156 157 158 159
template <typename T>
void DatasetImpl<T>::SetMergeBySid(bool is_merge) {
  merge_by_sid_ = is_merge;
}

template <typename T>
void DatasetImpl<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

160 161 162 163 164 165
template <typename T>
void DatasetImpl<T>::SetGenerateUniqueFeasign(bool gen_uni_feasigns) {
  gen_uni_feasigns_ = gen_uni_feasigns;
  VLOG(3) << "Set generate unique feasigns: " << gen_uni_feasigns;
}

166 167 168 169 170 171 172 173
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  if (input_pv_channel_ == nullptr) {
    input_pv_channel_ = paddle::framework::MakeChannel<PvInstance>();
  }
  if (multi_pv_output_.size() == 0) {
    multi_pv_output_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_output_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
  if (multi_pv_consume_.size() == 0) {
    multi_pv_consume_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_consume_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
216 217
}

218 219 220 221 222 223 224 225 226 227 228 229
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

X
xjqbest 已提交
230 231
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
232 233 234
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
235 236
  platform::Timer timeline;
  timeline.Start();
237 238
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
239 240
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
241 242 243 244
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
245 246 247
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
248

249 250
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
251
          << ", memory data size=" << input_channel_->Size()
252
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
253 254
}

J
jiaqi 已提交
255 256 257
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
258
  if (preload_thread_num_ != 0) {
259
    CHECK(static_cast<size_t>(preload_thread_num_) == preload_readers_.size());
260 261 262 263 264 265 266
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
267
    CHECK(static_cast<size_t>(thread_num_) == readers_.size());
268 269 270 271 272
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

289 290 291 292
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
293 294 295 296 297 298 299 300 301 302
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
303
  }
J
jiaqi 已提交
304 305 306 307 308 309 310 311 312
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  if (input_pv_channel_) {
    input_pv_channel_->Clear();
    input_pv_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_pv_output_.size(); ++i) {
    if (!multi_pv_output_[i]) {
      continue;
    }
    multi_pv_output_[i]->Clear();
    multi_pv_output_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_output_);
  for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
    if (!multi_pv_consume_[i]) {
      continue;
    }
    multi_pv_consume_[i]->Clear();
    multi_pv_consume_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_consume_);

J
jiaqi 已提交
334
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
335 336
  input_records_.clear();
  std::vector<T>().swap(input_records_);
H
hutuxian 已提交
337
  std::vector<T>().swap(slots_shuffle_original_data_);
338
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
H
hutuxian 已提交
339 340 341 342 343
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_
          << ")";  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
344 345
}

M
malin10 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
template <typename T>
void DatasetImpl<T>::InitTDMTree(
    const std::vector<std::pair<std::string, std::string>> config) {
  auto tree_ptr = TreeWrapper::GetInstance();
  for (auto& iter : config) {
    tree_ptr->insert(iter.first, iter.second);
  }
  return;
}

// do dump
template <typename T>
void DatasetImpl<T>::TDMDump(std::string name, const uint64_t table_id,
                             int fea_value_dim, const std::string tree_path) {
  auto tree_ptr = TreeWrapper::GetInstance();
  tree_ptr->dump_tree(name, table_id, fea_value_dim, tree_path);
}

// do sample
template <typename T>
void DatasetImpl<T>::TDMSample(const uint16_t sample_slot,
                               const uint64_t type_slot) {
  VLOG(0) << "DatasetImpl<T>::Sample() begin";
  platform::Timer timeline;
  timeline.Start();

  std::vector<std::vector<T>> data;
  std::vector<std::vector<T>> sample_results;
  if (!input_channel_ || input_channel_->Size() == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      std::vector<T> tmp_data;
      data.push_back(tmp_data);
      if (!multi_output_channel_[i] || multi_output_channel_[i]->Size() == 0) {
        continue;
      }
      multi_output_channe_[i]->ReadAll(data[i]);
    }
  } else {
    input_channel_->Close();
    std::vector<T> tmp_data;
    data.push_back(tmp_data);
    input_channel_->ReadAll(data[data.size() - 1]);
  }

  auto tree_ptr = TreeWrapper::GetInstance();
  for (auto i = 0; i < data.size(); i++) {
    std::vector<T> tmp_results;
    tree_ptr->sample(sample_slot, type_slot, data[i], tmp_results);
    sample_results.push_back(tmp_results);
  }

  for (auto i = 0; i < sample_results.size(); i++) {
    auto output_idx = fleet_ptr->LocalRandomEngine()() % output_channel_num;
    multi_output_channe_[i]->Write(std::move(sample_results[i]))
  }

  data.clear();
  sample_results.clear();
  data.shrink_to_fit();
  sample_results.shrink_to_fit();

  timeline.Pause();
  VLOG(0) << "DatasetImpl<T>::Sample() end, cost time=" << timeline.ElapsedSec()
          << " seconds";
  return;
}

X
xjqbest 已提交
413
// do local shuffle
414 415 416
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
417 418
  platform::Timer timeline;
  timeline.Start();
419

J
jiaqi 已提交
420 421 422
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
423
  }
J
jiaqi 已提交
424 425 426 427 428 429 430 431 432 433 434
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

435 436 437
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
438 439
}

440
template <typename T>
441
void DatasetImpl<T>::GlobalShuffle(int thread_num) {
X
xujiaqi01 已提交
442
#ifdef PADDLE_WITH_PSLIB
443
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
444 445
  platform::Timer timeline;
  timeline.Start();
446
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

468 469 470 471 472 473 474 475 476 477
  auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
    if (!this->merge_by_insid_) {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
    } else {
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
J
jiaqi 已提交
478 479 480 481 482
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
483
        auto client_id = get_client_id(t);
J
jiaqi 已提交
484 485 486 487 488 489 490 491 492
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
493
      for (int index = 0; index < this->trainer_num_; ++index) {
J
jiaqi 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
509 510 511 512 513 514
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
515 516 517
    }
  };

518
  std::vector<std::thread> global_shuffle_threads;
519 520 521 522 523
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
524
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
525 526 527
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
528
  }
J
jiaqi 已提交
529 530 531
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
532 533 534
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
X
xujiaqi01 已提交
535
#endif
536 537
}

538
template <typename T>
H
hutuxian 已提交
539 540
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num,
                                             bool discard_remaining_ins) {
541 542 543 544 545 546 547 548 549 550
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
551 552 553 554 555
  std::vector<paddle::framework::Channel<PvInstance>>* origin_pv_channels =
      nullptr;
  std::vector<paddle::framework::Channel<PvInstance>>* other_pv_channels =
      nullptr;

556 557 558 559 560
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
561
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
562 563 564 565 566 567 568 569 570 571 572 573 574
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
575 576
    origin_pv_channels = &multi_pv_output_;
    other_pv_channels = &multi_pv_consume_;
577 578 579
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
580 581
    origin_pv_channels = &multi_pv_consume_;
    other_pv_channels = &multi_pv_output_;
582
  }
583 584 585 586
  CHECK(origin_channels != nullptr);     // NOLINT
  CHECK(other_channels != nullptr);      // NOLINT
  CHECK(origin_pv_channels != nullptr);  // NOLINT
  CHECK(other_pv_channels != nullptr);   // NOLINT
587 588 589 590 591

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
592 593 594
  std::vector<paddle::framework::Channel<PvInstance>> new_pv_channels;
  std::vector<paddle::framework::Channel<PvInstance>> new_other_pv_channels;

595
  std::vector<T> local_vec;
596
  for (size_t i = 0; i < origin_channels->size(); ++i) {
597 598 599 600 601 602
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
H
hutuxian 已提交
603 604 605 606
  if (static_cast<int>(total_data_channel->Size()) >= channel_num) {
    total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                     (discard_remaining_ins ? 0 : 1));
  }
H
hutuxian 已提交
607
  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
H
hutuxian 已提交
608 609
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
H
hutuxian 已提交
610
  }
611 612 613 614 615 616
  if (static_cast<int>(input_pv_channel_->Size()) >= channel_num) {
    input_pv_channel_->SetBlockSize(input_pv_channel_->Size() / channel_num +
                                    (discard_remaining_ins ? 0 : 1));
    VLOG(3) << "now input_pv_channle block size is "
            << input_pv_channel_->BlockSize();
  }
617 618 619 620 621 622 623

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
624 625 626
    new_other_pv_channels.push_back(
        paddle::framework::MakeChannel<PvInstance>());
    new_pv_channels.push_back(paddle::framework::MakeChannel<PvInstance>());
627 628 629 630 631 632 633 634
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

635 636 637 638 639
  origin_pv_channels->clear();
  other_pv_channels->clear();
  *origin_pv_channels = new_pv_channels;
  *other_pv_channels = new_other_pv_channels;

640 641 642 643
  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
644 645 646 647 648 649 650

  new_pv_channels.clear();
  new_other_pv_channels.clear();
  std::vector<paddle::framework::Channel<PvInstance>>().swap(new_pv_channels);
  std::vector<paddle::framework::Channel<PvInstance>>().swap(
      new_other_pv_channels);

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

675 676
template <typename T>
void DatasetImpl<T>::CreateReaders() {
677
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
678 679 680 681 682 683
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
684
  VLOG(3) << "readers size: " << readers_.size();
685
  if (readers_.size() != 0) {
J
jiaqi 已提交
686 687
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
688 689
    return;
  }
690
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
691
  int channel_idx = 0;
692
  for (int i = 0; i < thread_num_; ++i) {
693
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
694 695 696 697 698
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
H
hutuxian 已提交
699 700
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
J
jiaqi 已提交
701
    readers_[i]->SetFileList(filelist_);
702 703
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
704 705 706 707 708 709
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    // Notice: it is only valid for untest of test_paddlebox_datafeed.
    // In fact, it does not affect the train process when paddle is
    // complied with Box_Ps.
    readers_[i]->SetCurrentPhase(current_phase_);
J
jiaqi 已提交
710 711 712
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
713 714 715
    if (input_pv_channel_ != nullptr) {
      readers_[i]->SetInputPvChannel(input_pv_channel_.get());
    }
716 717
    if (cur_channel_ == 0 &&
        static_cast<size_t>(channel_idx) < multi_output_channel_.size()) {
J
jiaqi 已提交
718 719
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
720 721
      readers_[i]->SetOutputPvChannel(multi_pv_output_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_consume_[channel_idx].get());
722 723
    } else if (static_cast<size_t>(channel_idx) <
               multi_output_channel_.size()) {
J
jiaqi 已提交
724 725
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
726 727
      readers_[i]->SetOutputPvChannel(multi_pv_consume_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_output_[channel_idx].get());
J
jiaqi 已提交
728 729 730 731 732
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
733
  }
J
jiaqi 已提交
734
  VLOG(3) << "readers size: " << readers_.size();
735 736
}

737 738 739
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
740
  VLOG(3) << "readers size1: " << readers_.size();
741
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
742
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
743 744
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
H
hutuxian 已提交
770 771
    preload_readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    preload_readers_[i]->SetFeaNum(&total_fea_num_);
772
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
773
    preload_readers_[i]->SetParseContent(parse_content_);
774 775
    preload_readers_[i]->SetParseLogKey(parse_logkey_);
    preload_readers_[i]->SetEnablePvMerge(enable_pv_merge_);
776 777 778
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
779 780
    preload_readers_[i]->SetOutputPvChannel(nullptr);
    preload_readers_[i]->SetConsumePvChannel(nullptr);
781 782 783 784 785 786 787 788 789 790 791 792 793 794
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

795 796
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
797
  return input_channel_->Size();
798 799
}

800 801 802 803 804 805 806 807 808 809
template <typename T>
int64_t DatasetImpl<T>::GetPvDataSize() {
  if (enable_pv_merge_) {
    return input_pv_channel_->Size();
  } else {
    VLOG(0) << "It does not merge pv..";
    return 0;
  }
}

810 811 812
template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
813 814
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
815 816 817 818
  }
  return sum;
}

819 820
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
D
dongdaxiang 已提交
821
                                      const std::string& msg) {
D
dongdaxiang 已提交
822
#ifdef _LINUX
823
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
824
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

839
  auto fleet_ptr = FleetWrapper::GetInstance();
840 841 842 843 844 845 846 847 848 849
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
850
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
851 852 853 854
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
855
#endif
856 857 858
  return 0;
}

859
// explicit instantiation
J
jiaqi 已提交
860
template class DatasetImpl<Record>;
861

862 863 864
void MultiSlotDataset::PostprocessInstance() {
  // divide pv instance, and merge to input_channel_
  if (enable_pv_merge_) {
865 866 867
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::shuffle(input_records_.begin(), input_records_.end(),
                 fleet_ptr->LocalRandomEngine());
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
    input_channel_->Open();
    input_channel_->Write(std::move(input_records_));
    for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
      multi_pv_consume_[i]->Clear();
    }
    input_channel_->Close();
    input_records_.clear();
    input_records_.shrink_to_fit();
  } else {
    input_channel_->Open();
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      std::vector<Record> ins_data;
      multi_consume_channel_[i]->Close();
      multi_consume_channel_[i]->ReadAll(ins_data);
      input_channel_->Write(std::move(ins_data));
      ins_data.clear();
      ins_data.shrink_to_fit();
      multi_consume_channel_[i]->Clear();
    }
    input_channel_->Close();
888
    this->LocalShuffle();
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
  }
}

void MultiSlotDataset::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

void MultiSlotDataset::PreprocessInstance() {
  if (!input_channel_ || input_channel_->Size() == 0) {
    return;
  }
  if (!enable_pv_merge_) {  // means to use Record
    this->LocalShuffle();
  } else {  // means to use Pv
    auto fleet_ptr = FleetWrapper::GetInstance();
    input_channel_->Close();
    std::vector<PvInstance> pv_data;
    input_channel_->ReadAll(input_records_);
    int all_records_num = input_records_.size();
    std::vector<Record*> all_records;
    all_records.reserve(all_records_num);
    for (int index = 0; index < all_records_num; ++index) {
      all_records.push_back(&input_records_[index]);
    }

    std::sort(all_records.data(), all_records.data() + all_records_num,
              [](const Record* lhs, const Record* rhs) {
                return lhs->search_id < rhs->search_id;
              });
    if (merge_by_sid_) {
      uint64_t last_search_id = 0;
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        if (i == 0 || last_search_id != ins->search_id) {
          PvInstance pv_instance = make_pv_instance();
          pv_instance->merge_instance(ins);
          pv_data.push_back(pv_instance);
          last_search_id = ins->search_id;
          continue;
        }
        pv_data.back()->merge_instance(ins);
      }
    } else {
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        PvInstance pv_instance = make_pv_instance();
        pv_instance->merge_instance(ins);
        pv_data.push_back(pv_instance);
      }
    }

    std::shuffle(pv_data.begin(), pv_data.end(),
                 fleet_ptr->LocalRandomEngine());
    input_pv_channel_->Open();
    input_pv_channel_->Write(std::move(pv_data));

    pv_data.clear();
    pv_data.shrink_to_fit();
    input_pv_channel_->Close();
  }
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
void MultiSlotDataset::GenerateLocalTablesUnlock(int table_id, int feadim,
                                                 int read_thread_num,
                                                 int consume_thread_num,
                                                 int shard_num) {
  VLOG(3) << "MultiSlotDataset::GenerateUniqueFeasign begin";
  if (!gen_uni_feasigns_) {
    VLOG(3) << "generate_unique_feasign_=false, will not GenerateUniqueFeasign";
    return;
  }

  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
      local_map_tables = fleet_ptr_->GetLocalTable();
  local_map_tables.resize(shard_num);
  // read thread
  int channel_num = multi_output_channel_.size();
  if (read_thread_num < channel_num) {
    read_thread_num = channel_num;
  }
  std::vector<std::thread> threads(read_thread_num);
  consume_task_pool_.resize(consume_thread_num);
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset(new ::ThreadPool(1));
  }
  auto consume_func = [&local_map_tables](int shard_id, int feadim,
                                          std::vector<uint64_t>& keys) {
    for (auto k : keys) {
      if (local_map_tables[shard_id].find(k) ==
          local_map_tables[shard_id].end()) {
        local_map_tables[shard_id][k] = std::vector<float>(feadim, 0);
      }
    }
  };
  auto gen_func = [this, &shard_num, &feadim, &local_map_tables,
                   &consume_func](int i) {
    std::vector<Record> vec_data;
    std::vector<std::vector<uint64_t>> task_keys(shard_num);
    std::vector<std::future<void>> task_futures;
    this->multi_output_channel_[i]->Close();
    this->multi_output_channel_[i]->ReadAll(vec_data);
    for (size_t j = 0; j < vec_data.size(); j++) {
      for (auto& feature : vec_data[j].uint64_feasigns_) {
        int shard = feature.sign().uint64_feasign_ % shard_num;
        task_keys[shard].push_back(feature.sign().uint64_feasign_);
      }
    }

    for (int shard_id = 0; shard_id < shard_num; shard_id++) {
      task_futures.emplace_back(consume_task_pool_[shard_id]->enqueue(
          consume_func, shard_id, feadim, task_keys[shard_id]));
    }

    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    for (auto& tk : task_keys) {
      tk.clear();
      std::vector<uint64_t>().swap(tk);
    }
    task_keys.clear();
    std::vector<std::vector<uint64_t>>().swap(task_keys);
    for (auto& tf : task_futures) {
      tf.wait();
    }
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(gen_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset();
  }
  consume_task_pool_.clear();
  fleet_ptr_->PullSparseToLocal(table_id, feadim);
}
1030

1031 1032 1033 1034 1035 1036 1037 1038
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
1039
  std::vector<bool> use_slots_is_dense;
1040
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1041 1042 1043
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
1044
      use_slots_is_dense.push_back(slot.is_dense());
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
1069 1070 1071 1072 1073
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;
1074 1075 1076 1077 1078
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_float;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_float;
  std::unordered_map<uint16_t, bool> dense_empty;
1079

1080 1081 1082 1083 1084 1085
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
1086 1087 1088 1089
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
1090 1091 1092 1093
      i = j;
      continue;
    }

1094 1095
    all_int64.clear();
    all_float.clear();
1096 1097
    all_dense_uint64.clear();
    all_dense_float.clear();
1098 1099 1100 1101 1102 1103
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    for (size_t k = i; k < j; k++) {
      dense_empty.clear();
      local_dense_uint64.clear();
      local_dense_float.clear();
      for (auto& feature : recs[k].uint64_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_uint64[slot].push_back(feature);
        if (feature.sign().uint64_feasign_ != 0) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_uint64.find(slot) == all_dense_uint64.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_float[slot].push_back(feature);
        if (fabs(feature.sign().float_feasign_) >= 1e-6) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_float.find(slot) == all_dense_float.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& p : dense_empty) {
        if (local_dense_uint64.find(p.first) != local_dense_uint64.end()) {
          all_dense_uint64[p.first] = std::move(local_dense_uint64[p.first]);
        } else if (local_dense_float.find(p.first) != local_dense_float.end()) {
          all_dense_float[p.first] = std::move(local_dense_float[p.first]);
        }
      }
    }
    for (auto& f : all_dense_uint64) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(), f.second.begin(),
                                  f.second.end());
    }
    for (auto& f : all_dense_float) {
      rec.float_feasigns_.insert(rec.float_feasigns_.end(), f.second.begin(),
                                 f.second.end());
    }

1152 1153 1154
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
1155
      for (auto& feature : recs[k].uint64_feasigns_) {
1156
        uint16_t slot = feature.slot();
1157 1158 1159
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_int64.find(slot) != all_int64.end()) {
1160 1161 1162
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1163
        }
1164 1165 1166 1167 1168
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1169
      }
1170 1171
      all_int64.insert(local_uint64.begin(), local_uint64.end());

1172
      for (auto& feature : recs[k].float_feasigns_) {
1173
        uint16_t slot = feature.slot();
1174 1175 1176
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_float.find(slot) != all_float.end()) {
1177 1178 1179
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1180
        }
1181 1182 1183 1184 1185
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1186
      }
1187
      all_float.insert(local_float.begin(), local_float.end());
1188 1189
    }

1190 1191 1192 1193
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
1194
    } else {
1195
      results.push_back(std::move(rec));
1196
    }
1197
    i = j;
1198
  }
1199
  std::vector<Record>().swap(recs);
1200
  VLOG(3) << "results size " << results.size();
1201
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
  results.shrink_to_fit();

  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

1227 1228 1229
void MultiSlotDataset::GetRandomData(
    const std::unordered_set<uint16_t>& slots_to_replace,
    std::vector<Record>* result) {
1230 1231 1232 1233
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
1234 1235
  const auto& slots_shuffle_original_data = GetSlotsOriginalData();
  for (const auto& rec : slots_shuffle_original_data) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
1249
      auto range = rand_rec.feas_.equal_range(slot);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

1261 1262 1263
void MultiSlotDataset::PreprocessChannel(
    const std::set<std::string>& slots_to_replace,
    std::unordered_set<uint16_t>& index_slots) {  // NOLINT
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
1277

1278 1279 1280 1281 1282
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
1283

1284
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
1285
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  PADDLE_ENFORCE_EQ(slots_shuffle_fea_eval_, true,
                    platform::errors::PreconditionNotMet(
                        "fea eval mode off, need to set on for slots shuffle"));
  platform::Timer timeline;
  timeline.Start();
  std::unordered_set<uint16_t> index_slots;
  PreprocessChannel(slots_to_replace, index_slots);

1382 1383 1384 1385 1386 1387 1388 1389 1390
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();
Y
yaoxuefeng 已提交
1391
  cur_channel_ = 0;
1392 1393 1394 1395 1396 1397 1398

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

D
dongdaxiang 已提交
1399 1400
}  // end namespace framework
}  // end namespace paddle