data_set.cc 45.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16
#include <algorithm>
17
#include <random>
18
#include <unordered_map>
19
#include <unordered_set>
20 21 22
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
23
#include "paddle/fluid/framework/data_feed_factory.h"
24
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
25
#include "paddle/fluid/framework/io/fs.h"
H
hutuxian 已提交
26
#include "paddle/fluid/platform/monitor.h"
27
#include "paddle/fluid/platform/timer.h"
28
#include "xxhash.h"  // NOLINT
29

D
dongdaxiang 已提交
30 31 32 33 34
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

H
hutuxian 已提交
35
USE_INT_STAT(STAT_total_feasign_num_in_mem);
36 37 38
namespace paddle {
namespace framework {

X
xjqbest 已提交
39
// constructor
40
template <typename T>
41
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
42
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
43
  thread_num_ = 1;
44
  trainer_num_ = 1;
J
jiaqi 已提交
45
  channel_num_ = 1;
46
  file_idx_ = 0;
H
hutuxian 已提交
47
  total_fea_num_ = 0;
J
jiaqi 已提交
48
  cur_channel_ = 0;
49 50
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
51
  merge_by_insid_ = false;
52 53
  merge_by_sid_ = true;
  enable_pv_merge_ = false;
54
  merge_size_ = 2;
55 56
  parse_ins_id_ = false;
  parse_content_ = false;
57
  parse_logkey_ = false;
58
  preload_thread_num_ = 0;
59
  global_index_ = 0;
60
}
61

X
xjqbest 已提交
62
// set filelist, file_idx_ will reset to zero.
63 64
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
65
  VLOG(3) << "filelist size: " << filelist.size();
66
  filelist_ = filelist;
67
  file_idx_ = 0;
68 69
}

X
xjqbest 已提交
70
// set expect thread num. actually it may change
71 72
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
73
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
74 75 76
  thread_num_ = thread_num;
}

X
xjqbest 已提交
77 78 79
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
80
template <typename T>
81 82
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
83 84
}

X
xjqbest 已提交
85 86 87 88 89 90 91 92
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

93 94 95
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
96 97
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
98
  std::string cmd = std::string("$HADOOP_HOME/bin/hadoop fs");
99 100
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
101
  cmd += " -Ddfs.client.block.write.retries=15 -Ddfs.rpc.timeout=500000";
102
  paddle::framework::hdfs_set_command(cmd);
103
}
104

105 106 107 108 109 110 111 112 113 114
template <typename T>
void DatasetImpl<T>::SetDownloadCmd(const std::string& download_cmd) {
  paddle::framework::set_download_command(download_cmd);
}

template <typename T>
std::string DatasetImpl<T>::GetDownloadCmd() {
  return paddle::framework::download_cmd();
}

115 116
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
117 118
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
119 120
}

121
template <typename T>
J
jiaqi 已提交
122 123 124 125
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

126 127 128 129 130 131 132 133 134 135
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

136 137 138 139 140
template <typename T>
void DatasetImpl<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

141
template <typename T>
142
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
143
  merge_by_insid_ = true;
144
  parse_ins_id_ = true;
145
  merge_size_ = merge_size;
146 147
}

148 149 150 151 152 153 154 155 156 157
template <typename T>
void DatasetImpl<T>::SetMergeBySid(bool is_merge) {
  merge_by_sid_ = is_merge;
}

template <typename T>
void DatasetImpl<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

158 159 160 161 162 163
template <typename T>
void DatasetImpl<T>::SetGenerateUniqueFeasign(bool gen_uni_feasigns) {
  gen_uni_feasigns_ = gen_uni_feasigns;
  VLOG(3) << "Set generate unique feasigns: " << gen_uni_feasigns;
}

164 165 166 167 168 169 170 171
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  if (input_pv_channel_ == nullptr) {
    input_pv_channel_ = paddle::framework::MakeChannel<PvInstance>();
  }
  if (multi_pv_output_.size() == 0) {
    multi_pv_output_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_output_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
  if (multi_pv_consume_.size() == 0) {
    multi_pv_consume_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_consume_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

X
xjqbest 已提交
228 229
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
230 231 232
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
233 234
  platform::Timer timeline;
  timeline.Start();
235 236
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
237 238
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
239 240 241 242
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
243 244 245
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
246

247 248
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
249
          << ", memory data size=" << input_channel_->Size()
250
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
251 252
}

J
jiaqi 已提交
253 254 255
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
256
  if (preload_thread_num_ != 0) {
257
    CHECK(static_cast<size_t>(preload_thread_num_) == preload_readers_.size());
258 259 260 261 262 263 264
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
265
    CHECK(static_cast<size_t>(thread_num_) == readers_.size());
266 267 268 269 270
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

287 288 289 290
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
291 292 293 294 295 296 297 298 299 300
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
301
  }
J
jiaqi 已提交
302 303 304 305 306 307 308 309 310
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  if (input_pv_channel_) {
    input_pv_channel_->Clear();
    input_pv_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_pv_output_.size(); ++i) {
    if (!multi_pv_output_[i]) {
      continue;
    }
    multi_pv_output_[i]->Clear();
    multi_pv_output_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_output_);
  for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
    if (!multi_pv_consume_[i]) {
      continue;
    }
    multi_pv_consume_[i]->Clear();
    multi_pv_consume_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_consume_);

J
jiaqi 已提交
332
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
333 334
  input_records_.clear();
  std::vector<T>().swap(input_records_);
H
hutuxian 已提交
335
  std::vector<T>().swap(slots_shuffle_original_data_);
336
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
H
hutuxian 已提交
337 338 339 340 341
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_
          << ")";  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
342 343
}

X
xjqbest 已提交
344
// do local shuffle
345 346 347
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
348 349
  platform::Timer timeline;
  timeline.Start();
350

J
jiaqi 已提交
351 352 353
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
354
  }
J
jiaqi 已提交
355 356 357 358 359 360 361 362 363 364 365
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

366 367 368
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
369 370
}

371
template <typename T>
372
void DatasetImpl<T>::GlobalShuffle(int thread_num) {
373
#ifdef PADDLE_WITH_PSLIB
374
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
375 376
  platform::Timer timeline;
  timeline.Start();
377
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

399 400 401 402 403 404 405 406 407 408
  auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
    if (!this->merge_by_insid_) {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
    } else {
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
J
jiaqi 已提交
409 410 411 412 413
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
414
        auto client_id = get_client_id(t);
J
jiaqi 已提交
415 416 417 418 419 420 421 422 423
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
424
      for (int index = 0; index < this->trainer_num_; ++index) {
J
jiaqi 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
440 441 442 443 444 445
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
446 447 448
    }
  };

449
  std::vector<std::thread> global_shuffle_threads;
450 451 452 453 454
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
455
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
456 457 458
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
459
  }
J
jiaqi 已提交
460 461 462
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
463 464 465
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
466
#endif
467 468
}

469
template <typename T>
470 471
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num,
                                             bool discard_remaining_ins) {
472 473 474 475 476 477 478 479 480 481
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
482 483 484 485 486
  std::vector<paddle::framework::Channel<PvInstance>>* origin_pv_channels =
      nullptr;
  std::vector<paddle::framework::Channel<PvInstance>>* other_pv_channels =
      nullptr;

487 488 489 490 491
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
492
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
493 494 495 496 497 498 499 500 501 502 503 504 505
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
506 507
    origin_pv_channels = &multi_pv_output_;
    other_pv_channels = &multi_pv_consume_;
508 509 510
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
511 512
    origin_pv_channels = &multi_pv_consume_;
    other_pv_channels = &multi_pv_output_;
513
  }
514 515 516 517
  CHECK(origin_channels != nullptr);     // NOLINT
  CHECK(other_channels != nullptr);      // NOLINT
  CHECK(origin_pv_channels != nullptr);  // NOLINT
  CHECK(other_pv_channels != nullptr);   // NOLINT
518 519 520 521 522

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
523 524 525
  std::vector<paddle::framework::Channel<PvInstance>> new_pv_channels;
  std::vector<paddle::framework::Channel<PvInstance>> new_other_pv_channels;

526
  std::vector<T> local_vec;
527
  for (size_t i = 0; i < origin_channels->size(); ++i) {
528 529 530 531 532 533
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
534 535 536 537
  if (static_cast<int>(total_data_channel->Size()) >= channel_num) {
    total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                     (discard_remaining_ins ? 0 : 1));
  }
538
  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
539 540
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
541
  }
542 543 544 545 546 547
  if (static_cast<int>(input_pv_channel_->Size()) >= channel_num) {
    input_pv_channel_->SetBlockSize(input_pv_channel_->Size() / channel_num +
                                    (discard_remaining_ins ? 0 : 1));
    VLOG(3) << "now input_pv_channle block size is "
            << input_pv_channel_->BlockSize();
  }
548 549 550 551 552 553 554

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
555 556 557
    new_other_pv_channels.push_back(
        paddle::framework::MakeChannel<PvInstance>());
    new_pv_channels.push_back(paddle::framework::MakeChannel<PvInstance>());
558 559 560 561 562 563 564 565
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

566 567 568 569 570
  origin_pv_channels->clear();
  other_pv_channels->clear();
  *origin_pv_channels = new_pv_channels;
  *other_pv_channels = new_other_pv_channels;

571 572 573 574
  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
575 576 577 578 579 580 581

  new_pv_channels.clear();
  new_other_pv_channels.clear();
  std::vector<paddle::framework::Channel<PvInstance>>().swap(new_pv_channels);
  std::vector<paddle::framework::Channel<PvInstance>>().swap(
      new_other_pv_channels);

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

606 607
template <typename T>
void DatasetImpl<T>::CreateReaders() {
608
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
609 610 611 612 613 614
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
615
  VLOG(3) << "readers size: " << readers_.size();
616
  if (readers_.size() != 0) {
J
jiaqi 已提交
617 618
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
619 620
    return;
  }
621
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
622
  int channel_idx = 0;
623
  for (int i = 0; i < thread_num_; ++i) {
624
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
625 626 627 628 629
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
H
hutuxian 已提交
630 631
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
J
jiaqi 已提交
632
    readers_[i]->SetFileList(filelist_);
633 634
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
635 636 637 638 639 640
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    // Notice: it is only valid for untest of test_paddlebox_datafeed.
    // In fact, it does not affect the train process when paddle is
    // complied with Box_Ps.
    readers_[i]->SetCurrentPhase(current_phase_);
J
jiaqi 已提交
641 642 643
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
644 645 646
    if (input_pv_channel_ != nullptr) {
      readers_[i]->SetInputPvChannel(input_pv_channel_.get());
    }
647 648
    if (cur_channel_ == 0 &&
        static_cast<size_t>(channel_idx) < multi_output_channel_.size()) {
J
jiaqi 已提交
649 650
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
651 652
      readers_[i]->SetOutputPvChannel(multi_pv_output_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_consume_[channel_idx].get());
653 654
    } else if (static_cast<size_t>(channel_idx) <
               multi_output_channel_.size()) {
J
jiaqi 已提交
655 656
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
657 658
      readers_[i]->SetOutputPvChannel(multi_pv_consume_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_output_[channel_idx].get());
J
jiaqi 已提交
659 660 661 662 663
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
664
  }
J
jiaqi 已提交
665
  VLOG(3) << "readers size: " << readers_.size();
666 667
}

668 669 670
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
671
  VLOG(3) << "readers size1: " << readers_.size();
672
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
673
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
674 675
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
676 677
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
H
hutuxian 已提交
701 702
    preload_readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    preload_readers_[i]->SetFeaNum(&total_fea_num_);
703
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
704
    preload_readers_[i]->SetParseContent(parse_content_);
705 706
    preload_readers_[i]->SetParseLogKey(parse_logkey_);
    preload_readers_[i]->SetEnablePvMerge(enable_pv_merge_);
707 708 709
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
710 711
    preload_readers_[i]->SetOutputPvChannel(nullptr);
    preload_readers_[i]->SetConsumePvChannel(nullptr);
712 713 714 715 716 717 718 719 720 721 722 723 724 725
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

726 727
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
728
  return input_channel_->Size();
729 730
}

731 732 733 734 735 736 737 738 739 740
template <typename T>
int64_t DatasetImpl<T>::GetPvDataSize() {
  if (enable_pv_merge_) {
    return input_pv_channel_->Size();
  } else {
    VLOG(0) << "It does not merge pv..";
    return 0;
  }
}

741 742 743
template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
744 745
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
746 747 748 749
  }
  return sum;
}

750 751
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
752
                                      const std::string& msg) {
D
dongdaxiang 已提交
753
#ifdef _LINUX
754
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
755
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

770
  auto fleet_ptr = FleetWrapper::GetInstance();
771 772 773 774 775 776 777 778 779 780
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
781
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
782 783 784 785
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
786
#endif
787 788 789
  return 0;
}

790
// explicit instantiation
J
jiaqi 已提交
791
template class DatasetImpl<Record>;
792

793 794 795
void MultiSlotDataset::PostprocessInstance() {
  // divide pv instance, and merge to input_channel_
  if (enable_pv_merge_) {
796 797 798
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::shuffle(input_records_.begin(), input_records_.end(),
                 fleet_ptr->LocalRandomEngine());
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    input_channel_->Open();
    input_channel_->Write(std::move(input_records_));
    for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
      multi_pv_consume_[i]->Clear();
    }
    input_channel_->Close();
    input_records_.clear();
    input_records_.shrink_to_fit();
  } else {
    input_channel_->Open();
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      std::vector<Record> ins_data;
      multi_consume_channel_[i]->Close();
      multi_consume_channel_[i]->ReadAll(ins_data);
      input_channel_->Write(std::move(ins_data));
      ins_data.clear();
      ins_data.shrink_to_fit();
      multi_consume_channel_[i]->Clear();
    }
    input_channel_->Close();
819
    this->LocalShuffle();
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
  }
}

void MultiSlotDataset::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

void MultiSlotDataset::PreprocessInstance() {
  if (!input_channel_ || input_channel_->Size() == 0) {
    return;
  }
  if (!enable_pv_merge_) {  // means to use Record
    this->LocalShuffle();
  } else {  // means to use Pv
    auto fleet_ptr = FleetWrapper::GetInstance();
    input_channel_->Close();
    std::vector<PvInstance> pv_data;
    input_channel_->ReadAll(input_records_);
    int all_records_num = input_records_.size();
    std::vector<Record*> all_records;
    all_records.reserve(all_records_num);
    for (int index = 0; index < all_records_num; ++index) {
      all_records.push_back(&input_records_[index]);
    }

    std::sort(all_records.data(), all_records.data() + all_records_num,
              [](const Record* lhs, const Record* rhs) {
                return lhs->search_id < rhs->search_id;
              });
    if (merge_by_sid_) {
      uint64_t last_search_id = 0;
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        if (i == 0 || last_search_id != ins->search_id) {
          PvInstance pv_instance = make_pv_instance();
          pv_instance->merge_instance(ins);
          pv_data.push_back(pv_instance);
          last_search_id = ins->search_id;
          continue;
        }
        pv_data.back()->merge_instance(ins);
      }
    } else {
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        PvInstance pv_instance = make_pv_instance();
        pv_instance->merge_instance(ins);
        pv_data.push_back(pv_instance);
      }
    }

    std::shuffle(pv_data.begin(), pv_data.end(),
                 fleet_ptr->LocalRandomEngine());
    input_pv_channel_->Open();
    input_pv_channel_->Write(std::move(pv_data));

    pv_data.clear();
    pv_data.shrink_to_fit();
    input_pv_channel_->Close();
  }
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
void MultiSlotDataset::GenerateLocalTablesUnlock(int table_id, int feadim,
                                                 int read_thread_num,
                                                 int consume_thread_num,
                                                 int shard_num) {
  VLOG(3) << "MultiSlotDataset::GenerateUniqueFeasign begin";
  if (!gen_uni_feasigns_) {
    VLOG(3) << "generate_unique_feasign_=false, will not GenerateUniqueFeasign";
    return;
  }

  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
      local_map_tables = fleet_ptr_->GetLocalTable();
  local_map_tables.resize(shard_num);
  // read thread
  int channel_num = multi_output_channel_.size();
  if (read_thread_num < channel_num) {
    read_thread_num = channel_num;
  }
  std::vector<std::thread> threads(read_thread_num);
  consume_task_pool_.resize(consume_thread_num);
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset(new ::ThreadPool(1));
  }
  auto consume_func = [&local_map_tables](int shard_id, int feadim,
                                          std::vector<uint64_t>& keys) {
    for (auto k : keys) {
      if (local_map_tables[shard_id].find(k) ==
          local_map_tables[shard_id].end()) {
        local_map_tables[shard_id][k] = std::vector<float>(feadim, 0);
      }
    }
  };
  auto gen_func = [this, &shard_num, &feadim, &local_map_tables,
                   &consume_func](int i) {
    std::vector<Record> vec_data;
    std::vector<std::vector<uint64_t>> task_keys(shard_num);
    std::vector<std::future<void>> task_futures;
    this->multi_output_channel_[i]->Close();
    this->multi_output_channel_[i]->ReadAll(vec_data);
    for (size_t j = 0; j < vec_data.size(); j++) {
      for (auto& feature : vec_data[j].uint64_feasigns_) {
        int shard = feature.sign().uint64_feasign_ % shard_num;
        task_keys[shard].push_back(feature.sign().uint64_feasign_);
      }
    }

    for (int shard_id = 0; shard_id < shard_num; shard_id++) {
      task_futures.emplace_back(consume_task_pool_[shard_id]->enqueue(
          consume_func, shard_id, feadim, task_keys[shard_id]));
    }

    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    for (auto& tk : task_keys) {
      tk.clear();
      std::vector<uint64_t>().swap(tk);
    }
    task_keys.clear();
    std::vector<std::vector<uint64_t>>().swap(task_keys);
    for (auto& tf : task_futures) {
      tf.wait();
    }
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(gen_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset();
  }
  consume_task_pool_.clear();
  fleet_ptr_->PullSparseToLocal(table_id, feadim);
}
961

962 963 964 965 966 967 968 969
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
970
  std::vector<bool> use_slots_is_dense;
971
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
972 973 974
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
975
      use_slots_is_dense.push_back(slot.is_dense());
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
1000 1001 1002 1003 1004
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;
1005 1006 1007 1008 1009
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_float;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_float;
  std::unordered_map<uint16_t, bool> dense_empty;
1010

1011 1012 1013 1014 1015 1016
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
1017 1018 1019 1020
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
1021 1022 1023 1024
      i = j;
      continue;
    }

1025 1026
    all_int64.clear();
    all_float.clear();
1027 1028
    all_dense_uint64.clear();
    all_dense_float.clear();
1029 1030 1031 1032 1033 1034
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    for (size_t k = i; k < j; k++) {
      dense_empty.clear();
      local_dense_uint64.clear();
      local_dense_float.clear();
      for (auto& feature : recs[k].uint64_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_uint64[slot].push_back(feature);
        if (feature.sign().uint64_feasign_ != 0) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_uint64.find(slot) == all_dense_uint64.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_float[slot].push_back(feature);
        if (fabs(feature.sign().float_feasign_) >= 1e-6) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_float.find(slot) == all_dense_float.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& p : dense_empty) {
        if (local_dense_uint64.find(p.first) != local_dense_uint64.end()) {
          all_dense_uint64[p.first] = std::move(local_dense_uint64[p.first]);
        } else if (local_dense_float.find(p.first) != local_dense_float.end()) {
          all_dense_float[p.first] = std::move(local_dense_float[p.first]);
        }
      }
    }
    for (auto& f : all_dense_uint64) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(), f.second.begin(),
                                  f.second.end());
    }
    for (auto& f : all_dense_float) {
      rec.float_feasigns_.insert(rec.float_feasigns_.end(), f.second.begin(),
                                 f.second.end());
    }

1083 1084 1085
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
1086
      for (auto& feature : recs[k].uint64_feasigns_) {
1087
        uint16_t slot = feature.slot();
1088 1089 1090
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_int64.find(slot) != all_int64.end()) {
1091 1092 1093
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1094
        }
1095 1096 1097 1098 1099
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1100
      }
1101 1102
      all_int64.insert(local_uint64.begin(), local_uint64.end());

1103
      for (auto& feature : recs[k].float_feasigns_) {
1104
        uint16_t slot = feature.slot();
1105 1106 1107
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_float.find(slot) != all_float.end()) {
1108 1109 1110
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1111
        }
1112 1113 1114 1115 1116
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1117
      }
1118
      all_float.insert(local_float.begin(), local_float.end());
1119 1120
    }

1121 1122 1123 1124
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
1125
    } else {
1126
      results.push_back(std::move(rec));
1127
    }
1128
    i = j;
1129
  }
1130
  std::vector<Record>().swap(recs);
1131
  VLOG(3) << "results size " << results.size();
1132
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
  results.shrink_to_fit();

  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

1158 1159 1160
void MultiSlotDataset::GetRandomData(
    const std::unordered_set<uint16_t>& slots_to_replace,
    std::vector<Record>* result) {
1161 1162 1163 1164
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
1165 1166
  const auto& slots_shuffle_original_data = GetSlotsOriginalData();
  for (const auto& rec : slots_shuffle_original_data) {
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
1180
      auto range = rand_rec.feas_.equal_range(slot);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

1192 1193 1194
void MultiSlotDataset::PreprocessChannel(
    const std::set<std::string>& slots_to_replace,
    std::unordered_set<uint16_t>& index_slots) {  // NOLINT
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
1208

1209 1210 1211 1212 1213
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
1214

1215
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
1216
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  PADDLE_ENFORCE_EQ(slots_shuffle_fea_eval_, true,
                    platform::errors::PreconditionNotMet(
                        "fea eval mode off, need to set on for slots shuffle"));
  platform::Timer timeline;
  timeline.Start();
  std::unordered_set<uint16_t> index_slots;
  PreprocessChannel(slots_to_replace, index_slots);

1313 1314 1315 1316 1317 1318 1319 1320 1321
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();
1322
  cur_channel_ = 0;
1323 1324 1325 1326 1327 1328 1329

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

1330 1331
}  // end namespace framework
}  // end namespace paddle
反馈
建议
客服 返回
顶部