data_set.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
D
dongdaxiang 已提交
16
#include <random>
17 18 19
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
20
#include "paddle/fluid/framework/data_feed_factory.h"
21
#include "paddle/fluid/framework/io/fs.h"
22
#include "paddle/fluid/platform/timer.h"
23

D
dongdaxiang 已提交
24 25 26 27 28
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

29 30 31
namespace paddle {
namespace framework {

X
xjqbest 已提交
32
// constructor
33
template <typename T>
D
dongdaxiang 已提交
34
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
35
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
36
  thread_num_ = 1;
37
  trainer_num_ = 1;
J
jiaqi 已提交
38
  channel_num_ = 1;
39
  file_idx_ = 0;
J
jiaqi 已提交
40 41 42
  cur_channel_ = 0;
  fleet_send_batch_size_ = 80000;
  fleet_send_sleep_seconds_ = 2;
D
dongdaxiang 已提交
43
}
44

X
xjqbest 已提交
45
// set filelist, file_idx_ will reset to zero.
46 47
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
48
  VLOG(3) << "filelist size: " << filelist.size();
49
  filelist_ = filelist;
50
  file_idx_ = 0;
51 52
}

X
xjqbest 已提交
53
// set expect thread num. actually it may change
54 55
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
56
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
57 58 59
  thread_num_ = thread_num;
}

X
xjqbest 已提交
60 61 62
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
63
template <typename T>
X
xujiaqi01 已提交
64 65
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
66 67
}

X
xjqbest 已提交
68 69 70 71 72 73 74 75
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

76 77 78
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
79 80
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
81 82 83 84
  std::string cmd = std::string("hadoop fs");
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
85
}
86

87 88
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
89 90
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
91 92
}

93
template <typename T>
J
jiaqi 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
125 126
}

127 128 129 130 131 132 133 134 135 136 137 138
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

X
xjqbest 已提交
139 140
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
141 142 143
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
144 145
  platform::Timer timeline;
  timeline.Start();
146 147
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
148 149
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
150 151 152 153
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
154 155 156
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
157 158
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
159
          << ", memory data size=" << input_channel_->Size()
160
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
161 162
}

J
jiaqi 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
  preload_threads_.clear();
  for (int64_t i = 0; i < thread_num_; ++i) {
    preload_threads_.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

186 187 188 189
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
190 191 192 193 194 195 196 197 198 199
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
200
  }
J
jiaqi 已提交
201 202 203 204 205 206 207 208 209 210
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
211 212 213
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
}

X
xjqbest 已提交
214
// do local shuffle
215 216 217
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
218 219
  platform::Timer timeline;
  timeline.Start();
220

J
jiaqi 已提交
221 222 223
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
224
  }
J
jiaqi 已提交
225 226 227 228 229 230 231 232 233 234 235
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

236 237 238
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
239 240
}

241 242 243
template <typename T>
void DatasetImpl<T>::GlobalShuffle() {
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
244 245
  platform::Timer timeline;
  timeline.Start();
246
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

  auto global_shuffle_func = [this]() {
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
        auto client_id = fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
      for (auto index = 0u; index < this->trainer_num_; ++index) {
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
      sleep(this->fleet_send_sleep_seconds_);
    }
  };

X
xujiaqi01 已提交
304
  VLOG(3) << "start global shuffle threads";
305
  std::vector<std::thread> global_shuffle_threads;
306
  for (int i = 0; i < thread_num_; ++i) {
J
jiaqi 已提交
307
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
308 309 310
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
311
  }
J
jiaqi 已提交
312 313 314
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
315 316 317
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
318 319
}

320 321
template <typename T>
void DatasetImpl<T>::CreateReaders() {
322
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
323 324 325 326 327 328 329 330
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(thread_num_ <= filelist_.size())
      << "thread num should <= filelist size";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
331
  VLOG(3) << "readers size: " << readers_.size();
332
  if (readers_.size() != 0) {
J
jiaqi 已提交
333 334
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
335 336
    return;
  }
337
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
338
  int channel_idx = 0;
339
  for (int i = 0; i < thread_num_; ++i) {
340
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFileList(filelist_);
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
    if (cur_channel_ == 0 && channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
    } else if (channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
361
  }
J
jiaqi 已提交
362
  VLOG(3) << "readers size: " << readers_.size();
363 364
}

365 366 367 368
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
369
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
370 371
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
372 373
}

374 375
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
376
  return input_channel_->Size();
377 378 379 380 381
}

template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
382 383
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
384 385 386 387
  }
  return sum;
}

388 389
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
D
dongdaxiang 已提交
390
                                      const std::string& msg) {
D
dongdaxiang 已提交
391
#ifdef _LINUX
392
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
393
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

408
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
409
  int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
410
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
411 412 413 414
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
415
#endif
416 417 418
  return 0;
}

419 420
// explicit instantiation
template class DatasetImpl<std::vector<MultiSlotType>>;
J
jiaqi 已提交
421
template class DatasetImpl<Record>;
422

D
dongdaxiang 已提交
423 424
}  // end namespace framework
}  // end namespace paddle