batch_norm_op_npu.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/batch_norm_op.h"
16
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22
using NPUDeviceContext = platform::NPUDeviceContext;

23 24 25 26 27 28 29 30 31
template <typename T>
class NPUBatchNormOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
32 33 34 35 36 37

    bool test_mode = is_test && (!trainable_stats);
    bool training = !test_mode && !use_global_stats;

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
38 39 40

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
41 42 43 44 45 46 47
    PADDLE_ENFORCE_EQ(
        (x_dims.size() == 4UL || x_dims.size() == 3UL), true,
        platform::errors::InvalidArgument(
            "The input tensor X's dimension must equal to 3 or 4. "
            " But got X's shape = [%s], X's dimension = [%d].",
            x_dims.to_str(), x_dims.size()));

48 49 50 51
    const auto *running_mean = ctx.Input<Tensor>("Mean");
    const auto *running_var = ctx.Input<Tensor>("Variance");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
52 53 54 55

    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

56 57 58 59 60
    auto &dev_ctx = ctx.template device_context<NPUDeviceContext>();
    auto x_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(x->dims(), dev_ctx);
    auto y_tesnor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(y->dims(), dev_ctx);
61 62
    x_tensor.ShareDataWith(*x);
    y_tesnor.ShareDataWith(*y);
63
    if (data_layout == DataLayout::kNHWC) {
64 65 66 67
      x_tensor.set_layout(DataLayout::kNHWC);
      y_tesnor.set_layout(DataLayout::kNHWC);
    }

68
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
69
    if (!training) {
70 71 72 73
      const auto &runner_infer = NpuOpRunner(
          "BNInfer", {x_tensor, *scale, *bias, *running_mean, *running_var},
          {y_tesnor}, {{"epsilon", epsilon}});
      runner_infer.Run(stream);
74 75 76 77 78
    } else {
      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
F
furnace 已提交
79 80 81 82
      mean_out->mutable_data<float>(ctx.GetPlace());
      variance_out->mutable_data<float>(ctx.GetPlace());
      saved_mean->mutable_data<float>(ctx.GetPlace());
      saved_variance->mutable_data<float>(ctx.GetPlace());
83

84 85 86 87 88
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        Tensor mom_cpu;
89 90
        paddle::framework::TensorCopySync(*mom_tensor, platform::CPUPlace(),
                                          &mom_cpu);
91 92 93 94 95 96 97
        momentum = mom_cpu.data<float>()[0];
      }

      framework::Tensor sum, square_sum;
      sum.mutable_data<float>(running_mean->dims(), ctx.GetPlace());
      square_sum.mutable_data<float>(running_mean->dims(), ctx.GetPlace());

98 99
      // BNTrainingReduce ONLY support rank = 4
      if (x->dims().size() == 3) {
100
        auto x_shape_vec = phi::vectorize(x->dims());
101 102 103 104 105
        if (data_layout == DataLayout::kNCHW) {
          x_shape_vec.push_back(1);  // expand NCL -> NCL1
        } else {
          x_shape_vec.insert(x_shape_vec.begin() + 2, 1);  // expand NLC -> NL1C
        }
106
        auto x_new_shape = phi::make_ddim(x_shape_vec);
107 108 109
        x_tensor.Resize(x_new_shape);
        x_tensor.Resize(x_new_shape);
      }
110 111 112 113 114 115 116 117 118 119 120
      const auto &runner_reduce =
          NpuOpRunner("BNTrainingReduce", {x_tensor}, {sum, square_sum},
                      {{"epsilon", epsilon}});
      runner_reduce.Run(stream);

      const auto &runner_update = NpuOpRunner(
          "BNTrainingUpdate", {x_tensor, sum, square_sum, *scale, *bias,
                               *running_mean, *running_var},
          {y_tesnor, *mean_out, *variance_out, *saved_mean, *saved_variance},
          {{"factor", momentum}, {"epsilon", epsilon}});
      runner_update.Run(stream);
121 122 123 124 125 126 127 128
    }
  }
};

template <typename T>
class NPUBatchNormGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
129 130
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
131 132
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
133 134 135 136 137 138 139 140
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool is_test = ctx.Attr<bool>("is_test");
    const float epsilon = ctx.Attr<float>("epsilon");
    DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
141

142 143 144
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
145 146 147

    use_global_stats = is_test || use_global_stats;

148 149 150 151 152
    auto &dev_ctx = ctx.template device_context<NPUDeviceContext>();
    auto x_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(x->dims(), dev_ctx);
    auto dy_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(d_y->dims(), dev_ctx);
153 154 155 156 157
    x_tensor.ShareDataWith(*x);
    dy_tensor.ShareDataWith(*d_y);
    if (data_layout == DataLayout::kNHWC) {
      x_tensor.set_layout(DataLayout::kNHWC);
      dy_tensor.set_layout(DataLayout::kNHWC);
158 159
    }

160 161 162 163
    auto scale_grad_tmp =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(scale->dims(), dev_ctx);
    auto bias_grad_tmp =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(bias->dims(), dev_ctx);
164 165
    if (d_scale == nullptr) {
      d_scale = &scale_grad_tmp;
166
    }
167 168
    if (d_bias == nullptr) {
      d_bias = &bias_grad_tmp;
169
    }
170 171 172

    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
    if (d_scale && d_bias) {
F
furnace 已提交
173 174
      d_scale->mutable_data<float>(ctx.GetPlace());
      d_bias->mutable_data<float>(ctx.GetPlace());
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
      if (use_global_stats) {
        const auto *running_mean = ctx.Input<Tensor>("Mean");
        const auto *running_variance = ctx.Input<Tensor>("Variance");
        const auto &runner_update =
            NpuOpRunner("BNTrainingUpdateGrad",
                        {dy_tensor, x_tensor, *running_mean, *running_variance},
                        {*d_scale, *d_bias}, {{"epsilon", epsilon}});
        runner_update.Run(stream);
      } else {
        const auto &runner_update =
            NpuOpRunner("BNTrainingUpdateGrad",
                        {dy_tensor, x_tensor, *saved_mean, *saved_inv_variance},
                        {*d_scale, *d_bias}, {{"epsilon", epsilon}});
        runner_update.Run(stream);
      }
    }
    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
193 194
      auto dx_tensor =
          ctx.AllocateTmpTensor<T, NPUDeviceContext>(d_x->dims(), dev_ctx);
195
      dx_tensor.ShareDataWith(*d_x);
196 197 198
      if (data_layout == DataLayout::kNHWC) {
        dx_tensor.set_layout(DataLayout::kNHWC);
      }
199
      if (use_global_stats) {
200 201
        if (x->dims().size() == 3) {
          // BNInferGrad only support x rank = 4,
202
          auto x_shape_vec = phi::vectorize(d_x->dims());
203 204 205 206 207 208
          if (data_layout == DataLayout::kNCHW) {
            x_shape_vec.push_back(1);  // expand NCL -> NCL1
          } else {
            x_shape_vec.insert(x_shape_vec.begin() + 2,
                               1);  // expand NLC -> NL1C
          }
209
          auto x_new_shape = phi::make_ddim(x_shape_vec);
210 211 212
          dx_tensor.Resize(x_new_shape);
          dy_tensor.Resize(x_new_shape);
        }
213 214 215 216 217 218 219 220 221 222 223 224
        const auto *running_var = ctx.Input<Tensor>("Variance");
        const auto &runner_infer =
            NpuOpRunner("BNInferGrad", {dy_tensor, *scale, *running_var},
                        {dx_tensor}, {{"epsilon", epsilon}});
        runner_infer.Run(stream);
      } else {
        const auto &runner_reduce = NpuOpRunner(
            "BNTrainingReduceGrad", {dy_tensor, x_tensor, *d_scale, *d_bias,
                                     *scale, *saved_mean, *saved_inv_variance},
            {dx_tensor}, {{"epsilon", epsilon}});
        runner_reduce.Run(stream);
      }
225 226 227 228 229 230 231 232 233 234 235 236 237
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(batch_norm, ops::NPUBatchNormOpKernel<float>,
                       ops::NPUBatchNormOpKernel<plat::float16>);
REGISTER_OP_NPU_KERNEL(batch_norm_grad, ops::NPUBatchNormGradOpKernel<float>,
                       ops::NPUBatchNormGradOpKernel<plat::float16>);