Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
9ed5db28
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9ed5db28
编写于
8月 11, 2021
作者:
R
ronnywang
提交者:
GitHub
8月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add batch_norm_op_npu and test (#34056)
* add batch_norm_op_npu and tests * remove skip.If * fix bug
上级
3f011d82
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
658 addition
and
0 deletion
+658
-0
paddle/fluid/operators/batch_norm_op_npu.cc
paddle/fluid/operators/batch_norm_op_npu.cc
+230
-0
python/paddle/fluid/tests/unittests/npu/test_batch_norm_op_npu.py
...addle/fluid/tests/unittests/npu/test_batch_norm_op_npu.py
+428
-0
未找到文件。
paddle/fluid/operators/batch_norm_op_npu.cc
0 → 100644
浏览文件 @
9ed5db28
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
NPUBatchNormOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>();
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
const
bool
trainable_stats
=
ctx
.
Attr
<
bool
>
(
"trainable_statistics"
);
const
bool
test_mode
=
is_test
&&
(
!
trainable_stats
);
const
std
::
string
data_layout
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The input tensor X's dimension must equal to 4. But "
"received X's shape = [%s], X's dimension = [%d]."
,
x_dims
,
x_dims
.
size
()));
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
Tensor
x_tensor
,
y_tesnor
;
x_tensor
.
ShareDataWith
(
*
x
);
y_tesnor
.
ShareDataWith
(
*
y
);
if
(
data_layout
==
"NHWC"
)
{
x_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
y_tesnor
.
set_layout
(
DataLayout
::
kNHWC
);
}
bool
training
=
!
test_mode
&&
!
use_global_stats
;
if
(
!
training
)
{
const
auto
*
est_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
est_var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
framework
::
Tensor
reserve_space1
,
reserve_space2
;
reserve_space1
.
mutable_data
<
float
>
(
est_mean
->
dims
(),
ctx
.
GetPlace
());
reserve_space2
.
mutable_data
<
float
>
(
est_var
->
dims
(),
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"BatchNorm"
,
{
x_tensor
,
*
scale
,
*
bias
,
*
est_mean
,
*
est_var
},
{
y_tesnor
,
reserve_space1
,
reserve_space2
,
reserve_space1
,
reserve_space2
},
{{
"epsilon"
,
epsilon
},
{
"is_training"
,
training
},
{
"data_format"
,
data_layout
}});
auto
stream
=
dev_ctx
.
stream
();
runner
.
Run
(
stream
);
}
else
{
// if MomentumTensor is set, use MomentumTensor value, momentum
// is only used in this training branch
if
(
ctx
.
HasInput
(
"MomentumTensor"
))
{
const
auto
*
mom_tensor
=
ctx
.
Input
<
Tensor
>
(
"MomentumTensor"
);
Tensor
mom_cpu
;
TensorCopySync
(
*
mom_tensor
,
platform
::
CPUPlace
(),
&
mom_cpu
);
momentum
=
mom_cpu
.
data
<
float
>
()[
0
];
}
auto
*
mean_out
=
ctx
.
Output
<
Tensor
>
(
"MeanOut"
);
auto
*
variance_out
=
ctx
.
Output
<
Tensor
>
(
"VarianceOut"
);
auto
*
saved_mean
=
ctx
.
Output
<
Tensor
>
(
"SavedMean"
);
auto
*
saved_variance
=
ctx
.
Output
<
Tensor
>
(
"SavedVariance"
);
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
variance_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
saved_mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
saved_variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
Tensor
mean_tmp
,
variance_tmp
;
mean_tmp
.
mutable_data
<
float
>
(
mean_out
->
dims
(),
ctx
.
GetPlace
());
variance_tmp
.
mutable_data
<
float
>
(
variance_out
->
dims
(),
ctx
.
GetPlace
());
const
auto
&
runner
=
NpuOpRunner
(
"BatchNorm"
,
{
x_tensor
,
*
scale
,
*
bias
},
{
y_tesnor
,
mean_tmp
,
variance_tmp
,
*
saved_mean
,
*
saved_variance
},
{{
"epsilon"
,
epsilon
},
{
"is_training"
,
training
},
{
"data_format"
,
data_layout
}});
auto
stream
=
dev_ctx
.
stream
();
runner
.
Run
(
stream
);
// Ascend can't output the estimated mean and variance
framework
::
Tensor
this_factor_tensor
;
this_factor_tensor
.
mutable_data
<
float
>
(
framework
::
make_ddim
({
1
}),
ctx
.
GetPlace
());
framework
::
TensorFromVector
<
float
>
({
static_cast
<
float
>
(
1.
-
momentum
)},
dev_ctx
,
&
this_factor_tensor
);
framework
::
Tensor
momentum_tensor
;
momentum_tensor
.
mutable_data
<
float
>
(
framework
::
make_ddim
({
1
}),
ctx
.
GetPlace
());
framework
::
TensorFromVector
<
float
>
({
static_cast
<
float
>
(
momentum
)},
dev_ctx
,
&
momentum_tensor
);
framework
::
Tensor
ones_tensor
;
ones_tensor
.
mutable_data
<
float
>
(
mean_out
->
dims
(),
ctx
.
GetPlace
());
framework
::
TensorFromVector
<
float
>
(
std
::
vector
<
float
>
(
framework
::
product
(
mean_out
->
dims
()),
1.0
f
),
dev_ctx
,
&
ones_tensor
);
const
auto
&
runner1
=
NpuOpRunner
(
"AddMatMatElements"
,
{
*
mean_out
,
*
saved_mean
,
ones_tensor
,
momentum_tensor
,
this_factor_tensor
},
{
*
mean_out
},
{});
runner1
.
Run
(
stream
);
const
auto
&
runner2
=
NpuOpRunner
(
"AddMatMatElements"
,
{
*
variance_out
,
*
saved_variance
,
ones_tensor
,
momentum_tensor
,
this_factor_tensor
},
{
*
variance_out
},
{});
runner2
.
Run
(
stream
);
}
}
};
template
<
typename
T
>
class
NPUBatchNormGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>();
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
std
::
string
data_layout
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
const
auto
*
y_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
auto
*
saved_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
scale_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
bias_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
use_global_stats
=
is_test
||
use_global_stats
;
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The input tensor X's dimension must equal to 4. But "
"received X's shape = [%s], X's dimension = [%d]."
,
x_dims
,
x_dims
.
size
()));
// init output
Tensor
scale_grad_tmp
,
bias_grad_tmp
,
x_grad_tmp
;
if
(
scale_grad
&&
bias_grad
)
{
scale_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
scale_grad_tmp
.
ShareDataWith
(
*
scale_grad
);
bias_grad_tmp
.
ShareDataWith
(
*
bias_grad
);
}
else
{
scale_grad_tmp
.
mutable_data
<
T
>
(
scale
->
dims
(),
ctx
.
GetPlace
());
bias_grad_tmp
.
mutable_data
<
T
>
(
bias
->
dims
(),
ctx
.
GetPlace
());
}
Tensor
x_tensor
,
y_grad_tensor
,
x_grad_tensor
;
x_tensor
.
ShareDataWith
(
*
x
);
y_grad_tensor
.
ShareDataWith
(
*
y_grad
);
if
(
x_grad
)
{
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
x_grad_tensor
.
ShareDataWith
(
*
x_grad
);
}
else
{
x_grad_tensor
.
mutable_data
<
T
>
(
x
->
dims
(),
ctx
.
GetPlace
());
}
if
(
data_layout
==
"NHWC"
)
{
x_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
y_grad_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
x_grad_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
}
if
(
!
use_global_stats
)
{
const
auto
&
runner
=
NpuOpRunner
(
"BatchNormGrad"
,
{
y_grad_tensor
,
x_tensor
,
*
scale
,
*
saved_mean
,
*
saved_variance
},
{
x_grad_tensor
,
scale_grad_tmp
,
bias_grad_tmp
,
*
saved_mean
,
*
saved_variance
},
// segment fault if no reserve_space_3 and
// reserve_space_4
{{
"epsilon"
,
epsilon
},
{
"is_training"
,
true
},
{
"data_format"
,
data_layout
}});
auto
stream
=
dev_ctx
.
stream
();
runner
.
Run
(
stream
);
}
else
{
const
auto
*
running_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
running_var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
&
runner
=
NpuOpRunner
(
"BatchNormGrad"
,
{
y_grad_tensor
,
x_tensor
,
*
scale
,
*
running_mean
,
*
running_var
},
{
x_grad_tensor
,
scale_grad_tmp
,
bias_grad_tmp
,
*
running_mean
,
*
running_var
},
// segment fault if no reserve_space_3 and
// reserve_space_4
{{
"epsilon"
,
epsilon
},
{
"is_training"
,
true
},
{
"data_format"
,
data_layout
}});
auto
stream
=
dev_ctx
.
stream
();
runner
.
Run
(
stream
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
batch_norm
,
ops
::
NPUBatchNormOpKernel
<
float
>
,
ops
::
NPUBatchNormOpKernel
<
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
batch_norm_grad
,
ops
::
NPUBatchNormGradOpKernel
<
float
>
,
ops
::
NPUBatchNormGradOpKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_batch_norm_op_npu.py
0 → 100644
浏览文件 @
9ed5db28
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.op
import
Operator
from
op_test
import
OpTest
,
_set_use_system_allocator
from
paddle.fluid
import
Program
,
program_guard
from
test_batch_norm_op
import
_reference_testing
,
_cal_mean_variance
,
_reference_training
,
_reference_grad
_set_use_system_allocator
(
False
)
paddle
.
enable_static
()
class
TestBatchNormOpInference
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
data_formats
=
[
"NCHW"
,
"NHWC"
]
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
check_with_place
(
self
,
place
,
data_layout
,
dtype
,
shape
):
epsilon
=
epsilon
=
0.00001
if
len
(
shape
)
==
2
:
x_shape
=
shape
c
=
x_shape
[
1
]
else
:
n
,
h
,
w
,
c
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
if
data_layout
==
"NHWC"
:
x_shape
=
[
n
,
h
,
w
,
c
]
elif
data_layout
==
"NCHW"
:
x_shape
=
[
n
,
c
,
h
,
w
]
else
:
raise
ValueError
(
"Unknown data layout."
)
scale_shape
=
[
c
]
x
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
dtype
)
x
=
x
-
0.5
scale
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
y
=
_reference_testing
(
x
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
data_layout
).
astype
(
dtype
)
var_dict
=
locals
()
var_names
=
[
"x"
,
"scale"
,
"bias"
,
"mean"
,
"variance"
,
"y"
]
ground_truth
=
{
name
:
var_dict
[
name
]
for
name
in
var_names
}
ground_truth
[
"saved_mean"
]
=
mean
ground_truth
[
"saved_variance"
]
=
variance
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
block
=
program
.
global_block
()
for
name
in
ground_truth
:
block
.
create_var
(
name
=
name
,
dtype
=
"float32"
,
shape
=
ground_truth
[
name
].
shape
)
inputs
=
{
"X"
:
block
.
var
(
"x"
),
"Scale"
:
block
.
var
(
"scale"
),
"Bias"
:
block
.
var
(
"bias"
),
"Mean"
:
block
.
var
(
"mean"
),
"Variance"
:
block
.
var
(
"variance"
)
}
attrs
=
{
"epsilon"
:
epsilon
,
"is_test"
:
True
,
"data_layout"
:
data_layout
,
"use_mkldnn"
:
False
,
"fuse_with_relu"
:
False
,
}
outputs
=
{
"Y"
:
block
.
var
(
"y"
),
"MeanOut"
:
block
.
var
(
"mean"
),
# share memory
"VarianceOut"
:
block
.
var
(
"variance"
),
# share memory
"SavedMean"
:
block
.
var
(
"saved_mean"
),
"SavedVariance"
:
block
.
var
(
"saved_variance"
)
}
block
.
create_var
(
name
=
"reserve_space"
,
dtype
=
'float32'
)
outputs
[
"ReserveSpace"
]
=
block
.
var
(
'reserve_space'
)
bn_op
=
block
.
append_op
(
type
=
"batch_norm"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
program
.
_sync_with_cpp
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
program
,
feed
=
{
name
:
ground_truth
[
name
]
for
name
in
[
"x"
,
"scale"
,
"bias"
,
"mean"
,
"variance"
]
},
fetch_list
=
[
"y"
])
self
.
__assert_close
(
var_dict
[
"y"
],
out
[
0
],
"y"
,
atol
=
1e-3
)
def
test_check_output
(
self
):
place
=
core
.
NPUPlace
(
0
)
for
data_format
in
self
.
data_formats
:
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
def
init_kernel_type
(
self
):
pass
class
TestFP16BatchNormOpInference
(
TestBatchNormOpInference
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float16
self
.
init_kernel_type
()
self
.
data_formats
=
[
"NCHW"
,
"NHWC"
]
class
TestBatchNormOpTraining
(
unittest
.
TestCase
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
setUp
(
self
):
self
.
set_npu
()
self
.
use_mkldnn
=
False
self
.
fuse_with_relu
=
False
self
.
data_formats
=
[
"NCHW"
,
"NHWC"
]
self
.
momentum
=
0.9
self
.
use_momentum_variable
=
False
self
.
epsilon
=
0.00001
self
.
init_kernel_type
()
self
.
init_test_case
()
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
"y"
,
'mean'
,
'variance'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
)
def
ref_forward_backward
(
self
,
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
):
# run forward
y
,
saved_mean
,
var_ref
=
_reference_training
(
x
,
scale
,
bias
,
epsilon
,
data_layout
)
mean_out
=
saved_mean
*
(
1.
-
momentum
)
+
momentum
*
mean
variance_out
=
var_ref
*
(
1.
-
momentum
)
+
momentum
*
variance
saved_variance
=
1.
/
np
.
sqrt
(
var_ref
+
epsilon
)
# run backward
x_grad
,
scale_grad
,
bias_grad
=
_reference_grad
(
x
,
y_grad
,
scale
,
saved_mean
,
var_ref
,
epsilon
,
data_layout
)
return
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
def
set_mean_variance
(
self
,
scale_shape
,
x
,
data_layout
):
mean
,
variance
=
_cal_mean_variance
(
x
,
self
.
epsilon
,
data_layout
)
mean_pre
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance_pre
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
# computing global mean/variance for one step
if
self
.
use_global_stats
:
mom
=
self
.
momentum
mean
=
mean
*
(
1.
-
mom
)
+
mom
*
mean_pre
variance
=
variance
*
(
1.
-
mom
)
+
mom
*
variance_pre
return
mean
,
variance
def
test_forward_backward
(
self
):
def
test_with_place
(
place
,
data_layout
,
shape
):
# attr
epsilon
=
self
.
epsilon
momentum
=
self
.
momentum
if
data_layout
==
"NCHW"
:
n
,
c
,
h
,
w
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
else
:
n
,
h
,
w
,
c
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
scale_shape
=
[
c
]
np
.
random
.
seed
(
123
)
x
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
scale
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
,
variance
=
self
.
set_mean_variance
(
scale_shape
,
x
,
data_layout
)
y_grad
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
momentum_var
=
np
.
array
([
momentum
]).
astype
(
np
.
float32
)
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
=
self
.
ref_forward_backward
(
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
)
var_dict
=
locals
()
var_dict
[
'y@GRAD'
]
=
y_grad
var_dict
[
'x@GRAD'
]
=
x_grad
var_dict
[
'scale@GRAD'
]
=
scale_grad
var_dict
[
'bias@GRAD'
]
=
bias_grad
var_names
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
,
"y"
,
'saved_mean'
,
'saved_variance'
,
'momentum_var'
]
ground_truth
=
{
name
:
var_dict
[
name
]
for
name
in
var_names
}
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
block
=
program
.
global_block
()
for
name
in
ground_truth
:
block
.
create_var
(
name
=
name
,
dtype
=
'float32'
,
shape
=
ground_truth
[
name
].
shape
)
inputs
=
{
"X"
:
block
.
var
(
'x'
),
"Scale"
:
block
.
var
(
'scale'
),
"Bias"
:
block
.
var
(
'bias'
),
"Mean"
:
block
.
var
(
'mean'
),
"Variance"
:
block
.
var
(
'variance'
)
}
attrs
=
{
"epsilon"
:
epsilon
,
"is_test"
:
False
,
"data_layout"
:
data_layout
,
"use_mkldnn"
:
self
.
use_mkldnn
,
"fuse_with_relu"
:
self
.
fuse_with_relu
,
"use_global_stats"
:
self
.
use_global_stats
}
if
self
.
use_momentum_variable
:
inputs
[
'MomentumTensor'
]
=
block
.
var
(
'momentum_var'
)
else
:
attrs
[
'momentum'
]
=
momentum
outputs
=
{
"Y"
:
block
.
var
(
"y"
),
"MeanOut"
:
block
.
var
(
'mean'
),
# share memory
"VarianceOut"
:
block
.
var
(
'variance'
),
# share memory
"SavedMean"
:
block
.
var
(
'saved_mean'
),
"SavedVariance"
:
block
.
var
(
'saved_variance'
)
}
block
.
create_var
(
name
=
"reserve_space"
,
dtype
=
'float32'
)
outputs
[
"ReserveSpace"
]
=
block
.
var
(
'reserve_space'
)
bn_op
=
block
.
append_op
(
type
=
"batch_norm"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
block
.
create_var
(
name
=
'y@GRAD'
,
dtype
=
'float32'
,
shape
=
y
.
shape
)
# generate backward op_desc
grad_op_desc_list
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
bn_op
.
desc
,
self
.
no_grad_set
,
[])
grad_op_desc
=
grad_op_desc_list
[
0
]
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
grad_op_desc
)
for
var_name
in
grad_op_desc
.
output_arg_names
():
block
.
desc
.
var
(
var_name
.
encode
(
"ascii"
))
grad_op_desc
.
infer_var_type
(
block
.
desc
)
grad_op_desc
.
infer_shape
(
block
.
desc
)
for
arg
in
grad_op_desc
.
output_arg_names
():
grad_var
=
block
.
desc
.
find_var
(
arg
.
encode
(
"ascii"
))
grad_var
.
set_dtype
(
core
.
VarDesc
.
VarType
.
FP32
)
program
.
_sync_with_cpp
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
program
,
feed
=
{
name
:
var_dict
[
name
]
for
name
in
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
,
'y@GRAD'
,
'momentum_var'
]
},
fetch_list
=
self
.
fetch_list
)
for
id
,
name
in
enumerate
(
self
.
fetch_list
):
if
name
==
'variance'
:
self
.
__assert_close
(
var_dict
[
name
],
out
[
id
],
name
,
atol
=
1e-3
)
continue
self
.
__assert_close
(
var_dict
[
name
],
out
[
id
],
name
)
print
(
"op test forward passed: "
,
str
(
place
),
data_layout
)
for
data_format
in
self
.
data_formats
:
test_with_place
(
core
.
NPUPlace
(
0
),
data_format
,
[
2
,
3
,
4
,
5
])
def
init_kernel_type
(
self
):
pass
class
TestBatchNormOpTrainingCase1
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
([
'scale@GRAD'
,
'bias@GRAD'
])
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
]
class
TestBatchNormOpTrainingMomentumVariable
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_momentum_variable
=
True
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
class
TestBatchNormOpFreezeStatsTraining
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
True
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
def
reference_grad
(
self
,
x
,
y_grad
,
scale
,
mean
,
var
,
epsilon
,
data_format
):
if
data_format
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
2
,
3
,
1
))
x_grad
=
scale
*
y_grad
/
np
.
sqrt
(
var
+
epsilon
)
grad_scale
=
np
.
sum
(
y_grad
*
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
),
axis
=
(
0
,
1
,
2
))
grad_offset
=
np
.
sum
(
y_grad
,
axis
=
(
0
,
1
,
2
))
# transfer back to N, C, H, W
if
data_format
==
"NCHW"
:
x_grad
=
np
.
transpose
(
x_grad
,
(
0
,
3
,
1
,
2
))
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
3
,
1
,
2
))
return
x_grad
,
grad_scale
,
grad_offset
def
ref_forward_backward
(
self
,
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
):
if
data_layout
!=
"NCHW"
and
data_layout
!=
"NHWC"
:
raise
ValueError
(
"Unknown data order."
)
if
data_layout
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
# run normalizaton
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
variance
+
epsilon
)
y
=
normalized
*
scale
+
bias
# transfer back to N, C, H, W
if
data_layout
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
y
=
np
.
transpose
(
y
,
(
0
,
3
,
1
,
2
))
mean_out
=
mean
variance_out
=
variance
saved_variance
=
1.
/
np
.
sqrt
(
variance
+
epsilon
)
# run backward
x_grad
,
scale_grad
,
bias_grad
=
self
.
reference_grad
(
x
,
y_grad
,
scale
,
mean
,
variance
,
epsilon
,
data_layout
)
return
y
,
mean_out
,
variance_out
,
mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
class
TestBatchNormOpFreezeStatsAndScaleBiasTraining
(
TestBatchNormOpFreezeStatsTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
True
self
.
no_grad_set
=
set
([
'scale@GRAD'
,
'bias@GRAD'
])
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
]
class
TestDygraphBatchNormTrainableStats
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
places
=
[
fluid
.
NPUPlace
(
0
)]
for
p
in
places
:
shape
=
[
4
,
10
,
4
,
4
]
def
compute
(
x
,
is_test
,
trainable_statistics
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute
(
x
,
False
,
False
)
y2
=
compute
(
x
,
True
,
True
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
def
test_static
(
self
):
places
=
[
fluid
.
NPUPlace
(
0
)]
for
p
in
places
:
exe
=
fluid
.
Executor
(
p
)
shape
=
[
4
,
10
,
16
,
16
]
def
compute
(
x_np
,
is_test
,
trainable_statistics
):
with
program_guard
(
Program
(),
Program
()):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x_np
.
shape
,
dtype
=
x_np
.
dtype
)
y
=
bn
(
x
)
exe
.
run
(
fluid
.
default_startup_program
())
r
=
exe
.
run
(
feed
=
{
'x'
:
x_np
},
fetch_list
=
[
y
])[
0
]
return
r
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute
(
x
,
False
,
False
)
y2
=
compute
(
x
,
True
,
True
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录