batch_norm_op_npu.cc 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/batch_norm_op.h"
16 17 18 19 20
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

21 22
using NPUDeviceContext = platform::NPUDeviceContext;

23 24 25 26 27 28 29 30 31
template <typename T>
class NPUBatchNormOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
32 33 34 35 36 37

    bool test_mode = is_test && (!trainable_stats);
    bool training = !test_mode && !use_global_stats;

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
38 39 40 41 42 43 44 45

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
    PADDLE_ENFORCE_EQ(x_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "The input tensor X's dimension must equal to 4. But "
                          "received X's shape = [%s], X's dimension = [%d].",
                          x_dims, x_dims.size()));
46 47 48 49
    const auto *running_mean = ctx.Input<Tensor>("Mean");
    const auto *running_var = ctx.Input<Tensor>("Variance");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
50 51 52 53

    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

54 55
    Tensor x_tensor(x->type());
    Tensor y_tesnor(y->type());
56 57
    x_tensor.ShareDataWith(*x);
    y_tesnor.ShareDataWith(*y);
58
    if (data_layout == DataLayout::kNHWC) {
59 60 61 62
      x_tensor.set_layout(DataLayout::kNHWC);
      y_tesnor.set_layout(DataLayout::kNHWC);
    }

63
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
64
    if (!training) {
65 66 67 68
      const auto &runner_infer = NpuOpRunner(
          "BNInfer", {x_tensor, *scale, *bias, *running_mean, *running_var},
          {y_tesnor}, {{"epsilon", epsilon}});
      runner_infer.Run(stream);
69 70 71 72 73 74 75 76 77 78
    } else {
      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
      mean_out->mutable_data<T>(ctx.GetPlace());
      variance_out->mutable_data<T>(ctx.GetPlace());
      saved_mean->mutable_data<T>(ctx.GetPlace());
      saved_variance->mutable_data<T>(ctx.GetPlace());

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        Tensor mom_cpu;
        TensorCopySync(*mom_tensor, platform::CPUPlace(), &mom_cpu);
        momentum = mom_cpu.data<float>()[0];
      }

      framework::Tensor sum, square_sum;
      sum.mutable_data<float>(running_mean->dims(), ctx.GetPlace());
      square_sum.mutable_data<float>(running_mean->dims(), ctx.GetPlace());

      const auto &runner_reduce =
          NpuOpRunner("BNTrainingReduce", {x_tensor}, {sum, square_sum},
                      {{"epsilon", epsilon}});
      runner_reduce.Run(stream);

      const auto &runner_update = NpuOpRunner(
          "BNTrainingUpdate", {x_tensor, sum, square_sum, *scale, *bias,
                               *running_mean, *running_var},
          {y_tesnor, *mean_out, *variance_out, *saved_mean, *saved_variance},
          {{"factor", momentum}, {"epsilon", epsilon}});
      runner_update.Run(stream);
103 104 105 106 107 108 109 110
    }
  }
};

template <typename T>
class NPUBatchNormGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
111 112
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
113 114
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
115 116 117 118 119 120 121 122
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    const bool is_test = ctx.Attr<bool>("is_test");
    const float epsilon = ctx.Attr<float>("epsilon");
    DataLayout data_layout = framework::StringToDataLayout(data_layout_str);
123

124 125 126
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
127 128 129

    use_global_stats = is_test || use_global_stats;

130 131 132 133 134 135 136
    Tensor x_tensor(x->type());
    Tensor dy_tensor(d_y->type());
    x_tensor.ShareDataWith(*x);
    dy_tensor.ShareDataWith(*d_y);
    if (data_layout == DataLayout::kNHWC) {
      x_tensor.set_layout(DataLayout::kNHWC);
      dy_tensor.set_layout(DataLayout::kNHWC);
137 138
    }

139 140 141 142 143
    Tensor scale_grad_tmp(scale->type());
    Tensor bias_grad_tmp(bias->type());
    if (d_scale == nullptr) {
      scale_grad_tmp.Resize(scale->dims());
      d_scale = &scale_grad_tmp;
144
    }
145 146 147
    if (d_bias == nullptr) {
      bias_grad_tmp.Resize(bias->dims());
      d_bias = &bias_grad_tmp;
148
    }
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      if (use_global_stats) {
        const auto *running_mean = ctx.Input<Tensor>("Mean");
        const auto *running_variance = ctx.Input<Tensor>("Variance");
        const auto &runner_update =
            NpuOpRunner("BNTrainingUpdateGrad",
                        {dy_tensor, x_tensor, *running_mean, *running_variance},
                        {*d_scale, *d_bias}, {{"epsilon", epsilon}});
        runner_update.Run(stream);
      } else {
        const auto &runner_update =
            NpuOpRunner("BNTrainingUpdateGrad",
                        {dy_tensor, x_tensor, *saved_mean, *saved_inv_variance},
                        {*d_scale, *d_bias}, {{"epsilon", epsilon}});
        runner_update.Run(stream);
      }
    }
    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
      Tensor dx_tensor(d_x->type());
      dx_tensor.ShareDataWith(*d_x);
      if (use_global_stats) {
        const auto *running_var = ctx.Input<Tensor>("Variance");
        const auto &runner_infer =
            NpuOpRunner("BNInferGrad", {dy_tensor, *scale, *running_var},
                        {dx_tensor}, {{"epsilon", epsilon}});
        runner_infer.Run(stream);
      } else {
        const auto &runner_reduce = NpuOpRunner(
            "BNTrainingReduceGrad", {dy_tensor, x_tensor, *d_scale, *d_bias,
                                     *scale, *saved_mean, *saved_inv_variance},
            {dx_tensor}, {{"epsilon", epsilon}});
        runner_reduce.Run(stream);
      }
187 188 189 190 191 192 193 194 195 196 197 198 199
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(batch_norm, ops::NPUBatchNormOpKernel<float>,
                       ops::NPUBatchNormOpKernel<plat::float16>);
REGISTER_OP_NPU_KERNEL(batch_norm_grad, ops::NPUBatchNormGradOpKernel<float>,
                       ops::NPUBatchNormGradOpKernel<plat::float16>);