trainer.py 21.5 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import os
17

Y
Yu Yang 已提交
18
import core
19

Y
Yu Yang 已提交
20
import data_feeder
21 22
import executor
import framework
J
Jeff Wang 已提交
23
import io
Y
Yu Yang 已提交
24 25
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
26
import parallel_executor
Y
Yancey 已提交
27
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29
__all__ = [
30 31
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
H
Helin Wang 已提交
32 33 34
]


Y
Yu Yang 已提交
35 36 37 38 39 40
class BeginEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
Y
yuyang18 已提交
41 42 43 44 45 46 47
    """
    The end of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

Y
Yu Yang 已提交
48 49
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
50

Y
Yu Yang 已提交
51 52 53 54 55

class BeginStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
56
        self.fetch_metrics = True
Y
Yu Yang 已提交
57 58 59


class EndStepEvent(object):
Y
yuyang18 已提交
60 61 62 63 64 65 66 67 68 69
    """
    The end of a training step.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
        metrics(list): A list of fetched tensor. The order of this list is same
        as the :code:`train_func` returns.
    """

Y
yuyang18 已提交
70
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
71 72
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
73
        self.metrics = metrics
H
Helin Wang 已提交
74 75


76
class CheckpointConfig(object):
Y
yuyang18 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    """
    Parameter object for :code:`fluid.io.save_checkpoint` and
    :code:`fluid.Trainer`. Used to configuration how to save checkpoint.

    Args:
        checkpoint_dir(str): Directory path to save check point. Default is the
        current directory.

        max_num_checkpoints(int): The max number of local check points.
        epoch_interval(int): Every number of epoch to save check point.
        step_interval(int): Every number of step to save check point.

    Examples:
        >>> config = fluid.CheckpointConfig("./checkpoints")
        >>> trainer = fluid.Trainer(train_func=train_program,
        >>>                         place=place,
        >>>                         optimizer_func=optimizer_func,
        >>>                         checkpoint_config=config)
        >>> trainer.train(...)
    """

98 99 100
    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
T
tangwei12 已提交
101 102
                 epoch_interval=1,
                 step_interval=10):
103 104
        if checkpoint_dir is None:
            self.checkpoint_dir = os.getcwd()
T
tangwei12 已提交
105 106 107
        else:
            self.checkpoint_dir = checkpoint_dir

108
        self.max_num_checkpoints = max_num_checkpoints
T
tangwei12 已提交
109 110 111 112 113 114 115 116 117 118

        if epoch_interval < 1:
            self.epoch_interval = 1
        else:
            self.epoch_interval = epoch_interval

        if step_interval < 1:
            self.step_interval = 10
        else:
            self.step_interval = step_interval
119

120 121
        self.epoch_id = 0
        self.step_id = 0
T
tangwei12 已提交
122 123
        self.load_serial = None
        self.is_pserver = False
T
tangwei12 已提交
124

125

Q
Qiao Longfei 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
152
class Trainer(object):
Y
Yu Yang 已提交
153
    """
Y
yuyang18 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
    simple neural network easily.

    This API takes a :code:`train_func`. A :code:`train_func` is a function that
    return loss as it first return value. The reset value can be fetched by
    EndStepEvent.metrics

    This API also takes a :code:`optimizer_func` that will return an optimizer
    instance.

    For example, to train a MLP for MNIST dataset, the sample program is

    >>> import paddle.fluid as fluid
    >>>
    >>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
    >>>     hidden = image
    >>>     for layer_size in layer_sizes:
    >>>         hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
    >>>     return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
    >>>
    >>> def train_mnist_mlp():
    >>>     img = fluid.layers.data(name='image', shape=[784])
    >>>     label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    >>>     prediction = mlp(img)
    >>>     return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
    >>>
    >>> def optimizer():
    >>>     return fluid.optimizer.Adam()
    >>>
    >>> trainer = Trainer(train_func=train_mnist_mlp,
    >>>                   optimizer_func=optimizer,
    >>>                   place=fluid.CUDAPlace(0),
    >>>                   parallel=True)
    >>>
    >>> def train_callback(event):
    >>>     if isinstance(event, fluid.EndStepEvent):
    >>>         print "Epoch ID", event.epoch, "Step ID",\
    >>>             event.step, "AvgLoss", event.metrics[0]
    >>>     elif isinstance(event, fluid.EndEpochEvent):
    >>>         trainer.save_params("./model_{0}".format(event.epoch))
    >>>
    >>> trainer.train(num_epochs=100, event_handler=train_callback)

    For more example, please see :ref:`api_guide_high_level_api`.

Y
Yu Yang 已提交
199 200

    Args:
Y
yuyang18 已提交
201 202
        train_func(callable): A function which will return loss. The loss must be
            a scalar tensor.
203
        optimizer_func(callable): A function that returns an Optimizer object.
Y
yuyang18 已提交
204 205 206 207 208 209
        place(CUDAPlace|CPUPlace): The device place of this trainer. If
            :code:`parallel=True,` all CUDA Places will be used if :code:`place`
            is a :code:`CUDAPlace`.
        parallel(bool): True if use multiple devices.
        checkpoint_config(CheckpointConfig): Configuration about how to save
            checkpoints.
Y
Yu Yang 已提交
210 211
    """

Q
Qiao Longfei 已提交
212 213
    def __init__(self,
                 train_func,
214
                 optimizer_func,
T
tangwei12 已提交
215
                 param_path=None,
Y
yuyang18 已提交
216
                 place=None,
217 218
                 parallel=False,
                 checkpoint_config=None):
219
        self.__stop = False
Y
yuyang18 已提交
220
        self.parallel = parallel
Q
Qiao Longfei 已提交
221

222 223
        # config for checkpoint
        # only chief worker will save variables
T
tangwei12 已提交
224
        self.trainer_id = 0
T
tangwei12 已提交
225 226 227
        self.checkpoint_cfg = checkpoint_config
        if self.checkpoint_cfg:
            assert isinstance(self.checkpoint_cfg, CheckpointConfig)
T
tangwei12 已提交
228
            serial = io.get_latest_checkpoint_serial(
T
tangwei12 已提交
229 230
                self.checkpoint_cfg.checkpoint_dir)
            self.checkpoint_cfg.load_serial = serial if serial >= 0 else None
231

H
Helin Wang 已提交
232
        self.scope = core.Scope()
Y
Yu Yang 已提交
233

Y
yuyang18 已提交
234 235 236 237
        # 1. we need to generate a framework.Program by calling
        # program_func. Reference: fluid.program_guard in
        # test_word2vec.py

Y
Yu Yang 已提交
238 239 240 241
        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
242
            program_func_outs = train_func()
Y
yuyang18 已提交
243
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
244
                program_func_outs, list) else [program_func_outs]
245
            self.test_program = self.train_program.clone(for_test=True)
246

247
            # The first element of program_func_outs is loss.
248 249 250
            loss = self.train_func_outputs[0]

            optimizer = optimizer_func()
Y
Yu Yang 已提交
251 252 253
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
254
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
255

Q
Qiao Longfei 已提交
256
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
257

Q
Qiao Longfei 已提交
258
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
259

H
Helin Wang 已提交
260 261
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
262
        # Run startup program
263 264 265
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
266

T
tangwei12 已提交
267
        if self.checkpoint_cfg and self.checkpoint_cfg.load_serial:
T
bug fix  
tangwei12 已提交
268 269
            with self._prog_and_scope_guard():
                exe = executor.Executor(place)
T
tangwei12 已提交
270 271
                io.load_checkpoint(exe, self.checkpoint_cfg.checkpoint_dir,
                                   self.checkpoint_cfg.load_serial,
T
bug fix  
tangwei12 已提交
272
                                   self.startup_program)
Y
Yu Yang 已提交
273

T
tangwei12 已提交
274
            if not self.checkpoint_cfg.is_pserver:
T
tangwei12 已提交
275
                epoch_id, step_id = io.load_trainer_args(
T
tangwei12 已提交
276 277 278 279 280
                    self.checkpoint_cfg.checkpoint_dir,
                    self.checkpoint_cfg.load_serial, self.trainer_id,
                    self._get_checkpoint_load_args())
                self.checkpoint_cfg.epoch_id = int(epoch_id)
                self.checkpoint_cfg.step_id = int(step_id)
T
tangwei12 已提交
281 282

        if param_path and os.path.isdir(param_path):
T
tangwei12 已提交
283
            # load params from param_path into scope
284
            io.load_persist_vars_without_grad(
T
tangwei12 已提交
285
                exe, dirname=param_path, program=self.startup_program)
T
tangwei12 已提交
286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

Q
Qiao Longfei 已提交
316
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
317 318 319 320
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
T
bug fix  
tangwei12 已提交
340
        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
T
tangwei12 已提交
341

342 343 344 345 346
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
T
bug fix  
tangwei12 已提交
347
                self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
348
            if training_role == "PSERVER":
T
tangwei12 已提交
349
                if self.checkpoint_cfg:
T
tangwei12 已提交
350 351
                    self.is_pserver = True

352 353 354 355 356 357 358 359 360
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
361

362 363 364 365 366 367
    def stop(self):
        """
        stop training
        """
        self.__stop = True

Y
yuyang18 已提交
368
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
369
        """
Y
yuyang18 已提交
370
        Start the train loop to train the model.
Y
Yu Yang 已提交
371 372 373 374

        Args:
            num_epochs: The number of epoch. An epoch will process all data in reader
            event_handler: The event handler. A function with type (ev:Event)->void
Y
yuyang18 已提交
375 376
            reader: A reader creator object. See also
                :ref:`api_guide_python_reader` .
Y
Yu Yang 已提交
377 378 379 380
            feed_order: Feeding order of reader. None will following the defining
                order in program

        Returns:
Y
yuyang18 已提交
381
            None
Y
Yu Yang 已提交
382
        """
383 384 385 386 387 388
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
389 390 391 392 393 394
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
395

396
    def test(self, reader, feed_order):
F
fengjiayi 已提交
397 398 399 400 401 402 403 404 405
        """
        Test the model on given test data

        Args:
            reader: The reader that yields test data.
            feed_order: Feeding order of reader. None will following the defining
                order in program
        """

Y
yuyang18 已提交
406 407
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
408

H
Helin Wang 已提交
409
    def save_params(self, param_path):
Y
yuyang18 已提交
410 411 412 413 414 415 416 417
        """
        Save all parameters into :code:`param_path`
        Args:
            param_path(str): The path to save parameters

        Returns:
            None
        """
418 419 420
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
444
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
445 446
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
447
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
448 449 450 451
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
T
tangwei12 已提交
452
        if self.checkpoint_cfg:
T
bug fix  
tangwei12 已提交
453 454
            epochs = [
                epoch_id for epoch_id in range(num_epochs)
T
tangwei12 已提交
455
                if epoch_id >= self.checkpoint_cfg.epoch_id
T
bug fix  
tangwei12 已提交
456 457 458 459
            ]
        else:
            epochs = [epoch_id for epoch_id in range(num_epochs)]

T
tangwei12 已提交
460
        for epoch_id in epochs:
Y
yuyang18 已提交
461 462
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
463
                if self.__stop:
T
bug fix  
tangwei12 已提交
464 465
                    if self.checkpoint_cfg:
                        self._clean_checkpoint()
466
                    return
T
tangwei12 已提交
467

T
tangwei12 已提交
468 469
                if self.checkpoint_cfg and self.checkpoint_cfg.load_serial \
                    and self.checkpoint_cfg.step_id >= step_id and self.checkpoint_cfg.epoch_id == epoch_id:
T
tangwei12 已提交
470 471
                    continue

Y
yuyang18 已提交
472 473 474 475 476 477 478 479 480 481
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
T
tangwei12 已提交
482

T
tangwei12 已提交
483 484
                if self.checkpoint_cfg:
                    self._save_checkpoint(epoch_id, step_id)
T
tangwei12 已提交
485
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
Y
yuyang18 已提交
486
            event_handler(EndEpochEvent(epoch_id))
T
tangwei12 已提交
487 488
        if self.checkpoint_cfg:
            self._clean_checkpoint()
F
fengjiayi 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
507 508 509 510 511 512 513 514
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
515
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)
Y
yuyang18 已提交
516 517 518 519 520 521 522 523 524 525 526

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

T
tangwei12 已提交
527
    def _clean_checkpoint(self):
T
tangwei12 已提交
528 529
        assert self.checkpoint_cfg
        io.clean_checkpoint(checkpoint_dir=self.checkpoint_cfg.checkpoint_dir)
T
tangwei12 已提交
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    def _get_checkpoint_load_args(self):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
        """
        return ["epoch_id", "step_id"]

    def _get_checkpoint_save_args(self, epoch_id, step_id):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
        """
        trainer_args = {}
        trainer_args["epoch_id"] = epoch_id
        trainer_args["step_id"] = step_id
        return trainer_args

T
tangwei12 已提交
546
    def _save_checkpoint(self, epoch_id, step_id):
T
tangwei12 已提交
547
        assert self.checkpoint_cfg
T
tangwei12 已提交
548

T
tangwei12 已提交
549
        if epoch_id % self.checkpoint_cfg.epoch_interval == 0 and step_id % self.checkpoint_cfg.step_interval == 0:
T
tangwei12 已提交
550 551 552
            exe = executor.Executor(self.place)
            io.save_checkpoint(
                executor=exe,
T
tangwei12 已提交
553
                checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
T
tangwei12 已提交
554
                trainer_id=self.trainer_id,
555
                trainer_args=self._get_checkpoint_save_args(epoch_id, step_id),
T
tangwei12 已提交
556
                main_program=self.train_program,
T
tangwei12 已提交
557
                max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints)
T
tangwei12 已提交
558

F
fengjiayi 已提交
559 560 561 562 563

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

564
    if isinstance(feed_order, list):
F
fengjiayi 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list