trainer.py 15.3 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import os
17

Y
Yu Yang 已提交
18
import core
19

Y
Yu Yang 已提交
20
import data_feeder
21 22
import executor
import framework
J
Jeff Wang 已提交
23
import io
Y
Yu Yang 已提交
24 25
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
26
import parallel_executor
Y
Yancey 已提交
27
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29
__all__ = [
30 31
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
H
Helin Wang 已提交
32 33 34
]


Y
Yu Yang 已提交
35 36 37 38 39 40 41 42
class BeginEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
43

Y
Yu Yang 已提交
44 45 46 47 48

class BeginStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
49
        self.fetch_metrics = True
Y
Yu Yang 已提交
50 51 52


class EndStepEvent(object):
Y
yuyang18 已提交
53
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
54 55
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
56
        self.metrics = metrics
H
Helin Wang 已提交
57 58


59 60 61 62 63 64 65 66 67 68 69
class CheckpointConfig(object):
    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
                 save_interval_secs=600):
        if checkpoint_dir is None:
            self.checkpoint_dir = os.getcwd()
        self.max_num_checkpoints = max_num_checkpoints
        self.save_interval_secs = save_interval_secs


Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
96
class Trainer(object):
Y
Yu Yang 已提交
97 98 99
    """

    Args:
Q
Qiao Longfei 已提交
100
        train_func(callable): A function which will return loss. The loss must be a scalar.
Y
Yu Yang 已提交
101 102 103 104
        optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
        place: The device place of this trainer.
    """

Q
Qiao Longfei 已提交
105 106 107
    def __init__(self,
                 train_func,
                 optimizer,
T
tangwei12 已提交
108
                 param_path=None,
Y
yuyang18 已提交
109
                 place=None,
110 111
                 parallel=False,
                 checkpoint_config=None):
112
        self.__stop = False
Y
yuyang18 已提交
113
        self.parallel = parallel
H
Helin Wang 已提交
114
        # 1. we need to generate a framework.Program by calling
H
Helin Wang 已提交
115
        # program_func. Reference: fluid.program_guard in
H
Helin Wang 已提交
116
        # test_word2vec.py
Q
Qiao Longfei 已提交
117 118 119
        if not isinstance(optimizer, opt_module.Optimizer):
            raise TypeError("The optimizer should be an instance of Optimizer")

120 121 122 123
        # config for checkpoint
        # only chief worker will save variables
        self.chief = True
        self.checkpoint = checkpoint_config
T
tangwei12 已提交
124 125
        if self.checkpoint and \
            not isinstance(self.checkpoint, CheckpointConfig):
126 127 128 129
            raise TypeError(
                "The checkpoint_config shoule be an instance of CheckpointConfig"
            )

H
Helin Wang 已提交
130
        self.scope = core.Scope()
Y
Yu Yang 已提交
131 132 133 134 135

        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
136
            program_func_outs = train_func()
Y
yuyang18 已提交
137
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
138 139
                program_func_outs, list) else [program_func_outs]
            self.test_program = self.train_program.clone()
Y
Yu Yang 已提交
140 141 142
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
F
fengjiayi 已提交
143
            # The fisrt element of program_func_outs is loss.
Y
yuyang18 已提交
144
            loss = self.train_func_outputs[0]
145
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
146

Q
Qiao Longfei 已提交
147
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
148

Q
Qiao Longfei 已提交
149
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
150

H
Helin Wang 已提交
151 152
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
153
        # Run startup program
154 155 156
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
157

158 159 160 161
        if self.checkpoint:
            exe = executor.Executor(place)
            io.load_checkpoint(exe, self.checkpoint.checkpoint_dir,
                               self.startup_program)
Y
Yu Yang 已提交
162

T
tangwei12 已提交
163 164 165 166
        if param_path:
            # load params from param_path into scope
            io.load_persistables(exe, dirname=param_path)

167 168 169 170 171 172
    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
173
            self.chief = self.trainer_id == 0
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

Q
Qiao Longfei 已提交
197
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
198 199 200 201
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
222
        self.chief = self.trainer_id == 0
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if training_role == "PSERVER":
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
239

240 241 242 243 244 245
    def stop(self):
        """
        stop training
        """
        self.__stop = True

Y
yuyang18 已提交
246
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259
        """
        Train the model.

        Args:
            num_epochs: The number of epoch. An epoch will process all data in reader
            event_handler: The event handler. A function with type (ev:Event)->void
            reader:
            feed_order: Feeding order of reader. None will following the defining
                order in program

        Returns:

        """
260 261 262 263 264 265
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
266 267 268 269 270 271
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
272

273
    def test(self, reader, feed_order):
F
fengjiayi 已提交
274 275 276 277 278 279 280 281 282
        """
        Test the model on given test data

        Args:
            reader: The reader that yields test data.
            feed_order: Feeding order of reader. None will following the defining
                order in program
        """

Y
yuyang18 已提交
283 284
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
285

H
Helin Wang 已提交
286 287
    def save_params(self, param_path):
        # reference: save_persistables in io.py
288 289 290
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
291

292 293 294 295 296 297 298 299
    def _save_checkpoint(self):
        if self.checkpoint and self.chief:
            exe = executor.Executor(self.place)
            io.save_checkpoint(exe, self.checkpoint.checkpoint_dir,
                               self.checkpoint.max_num_checkpoints,
                               self.checkpoint.save_interval_secs,
                               self.train_program)

Y
Yu Yang 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
322
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
323 324
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
325
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
326 327 328 329 330 331 332
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
        for epoch_id in range(num_epochs):
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
333 334
                if self.__stop:
                    return
Y
yuyang18 已提交
335 336 337 338 339 340 341 342 343 344 345
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
346
                self._save_checkpoint()
Y
yuyang18 已提交
347
            event_handler(EndEpochEvent(epoch_id))
F
fengjiayi 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
366 367 368 369 370 371 372 373
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
374
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)
Y
yuyang18 已提交
375 376 377 378 379 380 381 382 383 384 385

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

F
fengjiayi 已提交
386 387 388 389 390

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

391
    if isinstance(feed_order, list):
F
fengjiayi 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list