trainer.py 18.1 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import os
17

Y
Yu Yang 已提交
18
import core
19

Y
Yu Yang 已提交
20
import data_feeder
21 22
import executor
import framework
J
Jeff Wang 已提交
23
import io
Y
Yu Yang 已提交
24 25
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
26
import parallel_executor
Y
Yancey 已提交
27
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29
__all__ = [
30 31
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
H
Helin Wang 已提交
32 33 34
]


Y
Yu Yang 已提交
35 36 37 38 39 40 41 42
class BeginEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
43

Y
Yu Yang 已提交
44 45 46 47 48

class BeginStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
49
        self.fetch_metrics = True
Y
Yu Yang 已提交
50 51 52


class EndStepEvent(object):
Y
yuyang18 已提交
53
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
54 55
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
56
        self.metrics = metrics
H
Helin Wang 已提交
57 58


59 60 61 62
class CheckpointConfig(object):
    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
T
tangwei12 已提交
63 64
                 epoch_interval=1,
                 step_interval=10):
65 66
        if checkpoint_dir is None:
            self.checkpoint_dir = os.getcwd()
T
tangwei12 已提交
67 68 69
        else:
            self.checkpoint_dir = checkpoint_dir

70
        self.max_num_checkpoints = max_num_checkpoints
T
tangwei12 已提交
71 72 73 74 75 76 77 78 79 80

        if epoch_interval < 1:
            self.epoch_interval = 1
        else:
            self.epoch_interval = epoch_interval

        if step_interval < 1:
            self.step_interval = 10
        else:
            self.step_interval = step_interval
81

82 83
        self.epoch_id = 0
        self.step_id = 0
T
tangwei12 已提交
84 85
        self.load_serial = None
        self.is_pserver = False
T
tangwei12 已提交
86

87

Q
Qiao Longfei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
114
class Trainer(object):
Y
Yu Yang 已提交
115 116 117
    """

    Args:
Q
Qiao Longfei 已提交
118
        train_func(callable): A function which will return loss. The loss must be a scalar.
Y
Yu Yang 已提交
119 120 121 122
        optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
        place: The device place of this trainer.
    """

Q
Qiao Longfei 已提交
123 124 125
    def __init__(self,
                 train_func,
                 optimizer,
T
tangwei12 已提交
126
                 param_path=None,
Y
yuyang18 已提交
127
                 place=None,
128 129
                 parallel=False,
                 checkpoint_config=None):
130
        self.__stop = False
Y
yuyang18 已提交
131
        self.parallel = parallel
H
Helin Wang 已提交
132
        # 1. we need to generate a framework.Program by calling
H
Helin Wang 已提交
133
        # program_func. Reference: fluid.program_guard in
H
Helin Wang 已提交
134
        # test_word2vec.py
Q
Qiao Longfei 已提交
135 136 137
        if not isinstance(optimizer, opt_module.Optimizer):
            raise TypeError("The optimizer should be an instance of Optimizer")

138 139
        # config for checkpoint
        # only chief worker will save variables
T
tangwei12 已提交
140
        self.trainer_id = 0
141 142
        self.chief = True
        self.checkpoint = checkpoint_config
T
bug fix  
tangwei12 已提交
143 144 145 146 147 148
        if self.checkpoint:
            if not isinstance(self.checkpoint, CheckpointConfig):
                raise TypeError(
                    "The checkpoint_config shoule be an instance of CheckpointConfig"
                )
            else:
T
tangwei12 已提交
149
                serial = io.get_latest_checkpoint_serial(
T
bug fix  
tangwei12 已提交
150
                    self.checkpoint.checkpoint_dir)
T
tangwei12 已提交
151
                self.checkpoint.load_serial = serial if serial >= 0 else None
152

H
Helin Wang 已提交
153
        self.scope = core.Scope()
Y
Yu Yang 已提交
154 155 156 157 158

        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
159
            program_func_outs = train_func()
Y
yuyang18 已提交
160
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
161 162
                program_func_outs, list) else [program_func_outs]
            self.test_program = self.train_program.clone()
Y
Yu Yang 已提交
163 164 165
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
F
fengjiayi 已提交
166
            # The fisrt element of program_func_outs is loss.
Y
yuyang18 已提交
167
            loss = self.train_func_outputs[0]
168
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
169

Q
Qiao Longfei 已提交
170
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
171

Q
Qiao Longfei 已提交
172
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
173

H
Helin Wang 已提交
174 175
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
176
        # Run startup program
177 178 179
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
180

T
tangwei12 已提交
181
        if self.checkpoint and self.checkpoint.load_serial:
T
bug fix  
tangwei12 已提交
182 183 184 185 186
            with self._prog_and_scope_guard():
                exe = executor.Executor(place)
                io.load_checkpoint(exe, self.checkpoint.checkpoint_dir,
                                   self.checkpoint.load_serial,
                                   self.startup_program)
Y
Yu Yang 已提交
187

T
tangwei12 已提交
188 189 190
            if not self.checkpoint.is_pserver:
                epoch_id, step_id = io.load_trainer_args(
                    self.checkpoint.checkpoint_dir, self.checkpoint.load_serial,
191
                    self.trainer_id, self._get_checkpoint_load_args())
T
tangwei12 已提交
192 193
                self.checkpoint.epoch_id = int(epoch_id)
                self.checkpoint.step_id = int(step_id)
T
tangwei12 已提交
194 195

        if param_path and os.path.isdir(param_path):
T
tangwei12 已提交
196
            # load params from param_path into scope
197
            io.load_persist_vars_without_grad(
T
tangwei12 已提交
198
                exe, dirname=param_path, program=self.startup_program)
T
tangwei12 已提交
199

200 201 202 203 204 205
    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
206
            self.chief = self.trainer_id == 0
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

Q
Qiao Longfei 已提交
230
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
231 232 233 234
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
T
bug fix  
tangwei12 已提交
254
        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
255
        self.chief = self.trainer_id == 0
256 257 258 259 260
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
T
bug fix  
tangwei12 已提交
261
                self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
262
            if training_role == "PSERVER":
T
tangwei12 已提交
263 264 265
                if self.checkpoint:
                    self.is_pserver = True

266 267 268 269 270 271 272 273 274
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
275

276 277 278 279 280 281
    def stop(self):
        """
        stop training
        """
        self.__stop = True

Y
yuyang18 已提交
282
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295
        """
        Train the model.

        Args:
            num_epochs: The number of epoch. An epoch will process all data in reader
            event_handler: The event handler. A function with type (ev:Event)->void
            reader:
            feed_order: Feeding order of reader. None will following the defining
                order in program

        Returns:

        """
296 297 298 299 300 301
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
302 303 304 305 306 307
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
308

309
    def test(self, reader, feed_order):
F
fengjiayi 已提交
310 311 312 313 314 315 316 317 318
        """
        Test the model on given test data

        Args:
            reader: The reader that yields test data.
            feed_order: Feeding order of reader. None will following the defining
                order in program
        """

Y
yuyang18 已提交
319 320
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
321

H
Helin Wang 已提交
322 323
    def save_params(self, param_path):
        # reference: save_persistables in io.py
324 325 326
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
350
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
351 352
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
353
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
354 355 356 357
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
T
bug fix  
tangwei12 已提交
358 359 360 361 362 363 364 365
        if self.checkpoint:
            epochs = [
                epoch_id for epoch_id in range(num_epochs)
                if epoch_id >= self.checkpoint.epoch_id
            ]
        else:
            epochs = [epoch_id for epoch_id in range(num_epochs)]

T
tangwei12 已提交
366
        for epoch_id in epochs:
Y
yuyang18 已提交
367 368
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
369
                if self.__stop:
T
tangwei12 已提交
370
                    self._clean_checkpoint()
371
                    return
T
tangwei12 已提交
372

T
tangwei12 已提交
373
                if self.checkpoint and self.checkpoint.load_serial \
374
                    and self.checkpoint.step_id >= step_id and self.checkpoint.epoch_id == epoch_id:
T
tangwei12 已提交
375 376
                    continue

Y
yuyang18 已提交
377 378 379 380 381 382 383 384 385 386
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
T
tangwei12 已提交
387

Y
yuyang18 已提交
388
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
T
tangwei12 已提交
389
                self._save_checkpoint(epoch_id, step_id)
Y
yuyang18 已提交
390
            event_handler(EndEpochEvent(epoch_id))
T
tangwei12 已提交
391
        self._clean_checkpoint()
F
fengjiayi 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
410 411 412 413 414 415 416 417
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
418
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)
Y
yuyang18 已提交
419 420 421 422 423 424 425 426 427 428 429

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

T
tangwei12 已提交
430
    def _clean_checkpoint(self):
T
tangwei12 已提交
431
        if not self.checkpoint:
T
tangwei12 已提交
432 433 434
            return
        io.clean_checkpoint(checkpoint_dir=self.checkpoint.checkpoint_dir)

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    def _get_checkpoint_load_args(self):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
        """
        return ["epoch_id", "step_id"]

    def _get_checkpoint_save_args(self, epoch_id, step_id):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
        """
        trainer_args = {}
        trainer_args["epoch_id"] = epoch_id
        trainer_args["step_id"] = step_id
        return trainer_args

T
tangwei12 已提交
450
    def _save_checkpoint(self, epoch_id, step_id):
T
tangwei12 已提交
451
        if not self.checkpoint:
T
tangwei12 已提交
452 453 454 455 456 457 458
            return

        if epoch_id % self.checkpoint.epoch_interval == 0 and step_id % self.checkpoint.step_interval == 0:
            exe = executor.Executor(self.place)
            io.save_checkpoint(
                executor=exe,
                checkpoint_dir=self.checkpoint.checkpoint_dir,
T
tangwei12 已提交
459 460
                trainer_id=self.trainer_id,
                is_chief=self.chief,
461
                trainer_args=self._get_checkpoint_save_args(epoch_id, step_id),
T
tangwei12 已提交
462 463
                main_program=self.train_program,
                max_num_checkpoints=self.checkpoint.max_num_checkpoints)
T
tangwei12 已提交
464

F
fengjiayi 已提交
465 466 467 468 469

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

470
    if isinstance(feed_order, list):
F
fengjiayi 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list