random.py 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

C
cc 已提交
17
from ..fluid import core
18
from ..fluid.framework import in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
S
silingtong123 已提交
23

24 25 26
from ..fluid.io import shuffle  #DEFINE_ALIAS

__all__ = [
L
Leo Chen 已提交
27
    'bernoulli',
28 29
    'standard_normal',
    'normal',
P
pangyoki 已提交
30
    'uniform',
31 32 33 34
    'shuffle',
    'randn',
    'rand',
    'randint',
35
    'randperm',
36
]
S
silingtong123 已提交
37 38


L
Leo Chen 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

        import paddle

        paddle.disable_static()

        x = paddle.rand([2, 3])
        print(x.numpy())
        # [[0.11272584 0.3890902  0.7730957 ]
        # [0.10351662 0.8510418  0.63806665]]

        out = paddle.bernoulli(x)
        print(out.numpy())
        # [[0. 0. 1.]
        # [0. 0. 1.]]

    """

    if in_dygraph_mode():
        return core.ops.bernoulli(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
    return out


91
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
92 93 94 95 96
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
97
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
98 99 100 101
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
102 103
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
104
            is 1.0.
105 106
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
107 108 109
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
110
        name (str, optional): The default value is None. Normally there is no
111 112 113 114 115 116 117
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
118 119 120
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

121 122 123 124
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
125 126
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
127 128 129 130
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
131
        shape = utils.convert_shape_to_list(shape)
132 133 134 135 136
        return core.ops.gaussian_random('shape', shape, 'mean',
                                        float(mean), 'std',
                                        float(std), 'seed', seed, 'dtype',
                                        dtype)

137
    check_shape(shape, op_type_for_check)
138 139 140 141 142 143 144 145 146 147
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
148
    utils.get_shape_tensor_inputs(
149 150
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

151
    helper = LayerHelper('gaussian', **locals())
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
169
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
170 171 172 173
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
174
        dtype (str|np.dtype, optional): The data type of the output Tensor.
175 176 177
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            # example 1: attr shape is a list which doesn't contain Tensor.
194
            out1 = paddle.standard_normal(shape=[2, 3])
195 196 197 198
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
199 200 201
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
202 203 204 205 206 207 208 209
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
210 211
            shape_tensor = paddle.to_tensor([2, 3])
            result_3 = paddle.standard_normal(shape_tensor)
212 213 214 215
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
216
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265


randn = standard_normal


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

266
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
267 268 269
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

270
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
    if not in_dygraph_mode():
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
289
            check_shape(shape, 'normal')
290 291 292 293 294 295 296 297 298 299 300 301 302 303

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
304
        return gaussian(shape=shape, mean=mean, std=std, name=name)
305 306 307 308 309 310 311

    out = out * std + mean
    if not in_dygraph_mode():
        out.stop_grediant = True
    return out


312
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
    ::
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
330 331 332 333
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            paddle.disable_static()

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
            result_1 = paddle.tensor.random.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]

            # example 2:
            # attr shape is a list which contains Tensor.
            dim_1 = paddle.fill_constant([1], "int64", 2)
            dim_2 = paddle.fill_constant([1], "int32", 3)
            result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
378
            shape_tensor = paddle.to_tensor([2, 3])
P
pangyoki 已提交
379 380 381 382 383 384 385 386
            result_3 = paddle.tensor.random.uniform(shape_tensor)
            # if shape_tensor's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]


    """
387 388 389 390 391 392 393
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
                "uniform only supports [float32, float64], but the default dtype is %s"
                % dtype)

P
pangyoki 已提交
394 395 396 397
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
398
        shape = utils.convert_shape_to_list(shape)
P
pangyoki 已提交
399 400 401 402 403 404 405 406 407
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand')

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
408
    utils.get_shape_tensor_inputs(
P
pangyoki 已提交
409 410 411 412 413 414 415 416 417 418
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand')

    helper = LayerHelper("uniform_random", **locals())
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
    return out


419
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
420
    """
421 422 423
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
424 425

    Args:
426
        low (int): The lower bound on the range of random values to generate.
427 428
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
429
        high (int, optional): The upper bound on the range of random values to
430 431
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
432
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
433 434 435 436
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
437
        dtype (str|np.dtype, optional): The data type of the
438 439
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
440
        name (str, optional): The default value is None.  Normally there is no
441 442
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
443 444

    Returns: 
445 446
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
447 448 449

    Examples:
        .. code-block:: python
450

451
            import paddle
452

453
            paddle.disable_static()
454

455 456
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
457
            out1 = paddle.randint(low=-5, high=5, shape=[3])
458 459 460 461
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
462 463 464
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2], dtype="int32")
465 466 467 468 469
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
470 471
            shape_tensor = paddle.to_tensor(3)
            result_3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
472 473 474 475
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
476
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
477 478 479 480 481
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
482
            out5 = paddle.randint(10)
483
            # [7]  # random
S
silingtong123 已提交
484

485 486
    """
    if high is None:
487 488 489 490
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
491 492
        high = low
        low = 0
S
silingtong123 已提交
493 494
    if dtype is None:
        dtype = 'int64'
495 496
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
497 498

    if in_dygraph_mode():
499
        shape = utils.convert_shape_to_list(shape)
500 501
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
502

503
    check_shape(shape, 'randint')
504 505
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
506 507 508 509
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

510 511
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
512
    utils.get_shape_tensor_inputs(
513 514 515 516 517 518
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
silingtong123 已提交
519
    return out
C
cc 已提交
520 521


522
def randperm(n, dtype="int64", name=None):
C
cc 已提交
523
    """
524 525
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
526 527

    Args:
528 529
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
530 531
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
532
        name (str, optional): The default value is None. Normally there is no
533 534
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
535 536

    Returns:
537 538
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
539 540 541 542

    Examples:
        .. code-block:: python

543
            import paddle
C
cc 已提交
544

545
            paddle.disable_static()
C
cc 已提交
546

547
            out1 = paddle.randperm(5)
548
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
549

550
            out2 = paddle.randperm(7, 'int32')
551
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
552 553
 
    """
554 555 556 557 558
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
559 560 561

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
562 563
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
564 565

    helper = LayerHelper("randperm", **locals())
566 567 568 569
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
570
    out.stop_gradient = True
C
cc 已提交
571
    return out
X
Xing Wu 已提交
572 573


574
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
575
    """
576 577
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
578 579

    Args:
580
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
581 582 583 584
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
585
        dtype (str|np.dtype, optional): The data type of the output Tensor.
586 587 588
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
589
        name (str, optional): The default value is None. Normally there is no
590 591
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
592

X
Xing Wu 已提交
593
    Returns:
594 595
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
596 597 598 599

    Examples:
        .. code-block:: python

600
            import paddle
601

602 603
            paddle.disable_static()
            # example 1: attr shape is a list which doesn't contain Tensor.
604
            out1 = paddle.rand(shape=[2, 3])
605 606 607 608
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
609 610 611
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.rand(shape=[dim1, dim2, 2])
612 613 614 615 616 617 618 619
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
620 621 622
            shape_tensor = paddle.to_tensor([2, 3])
            result_3 = paddle.rand(shape_tensor)

623 624
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
625 626

    """
627
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)