framework.py 73.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
X
Xin Pan 已提交
21
import sys
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41 42 43
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
44
    'name_scope',
45
]
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
128 129 130
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
131 132 133 134


def grad_var_name(var_name):
    """
135 136
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
137 138 139
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
140

141
def convert_np_dtype_to_dtype_(np_dtype):
142 143
    """
    Convert the data type in numpy to the data type in Paddle
144

145
    Args:
146
        np_dtype(np.dtype): the data type in numpy.
147

148 149
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
150 151

    """
152 153
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
154
        return core.VarDesc.VarType.FP32
155
    elif dtype == np.float64:
156
        return core.VarDesc.VarType.FP64
157
    elif dtype == np.float16:
158
        return core.VarDesc.VarType.FP16
159
    elif dtype == np.int32:
160
        return core.VarDesc.VarType.INT32
161
    elif dtype == np.int16:
162
        return core.VarDesc.VarType.INT16
163
    elif dtype == np.int64:
164
        return core.VarDesc.VarType.INT64
165
    elif dtype == np.bool:
166
        return core.VarDesc.VarType.BOOL
167 168
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
169 170
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
171 172
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
173
    else:
M
minqiyang 已提交
174
        raise ValueError("Not supported numpy dtype %s" % dtype)
175 176 177


def dtype_is_floating(dtype):
178 179 180
    """
    Check the data type is floating or not.
    Args:
181
        dtype(np.dtype|core.VarDesc.VarType): data type.
182 183 184 185 186
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
187
    if not isinstance(dtype, core.VarDesc.VarType):
188 189
        dtype = convert_np_dtype_to_dtype_(dtype)

190 191 192 193
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
194 195


Y
Yang Yang(Tony) 已提交
196
def _debug_string_(proto, throw_on_error=True):
197 198 199 200 201 202 203 204 205 206 207
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
208
    error_fields = list()
Y
Yang Yang(Tony) 已提交
209
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
210 211
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
212 213 214
    return proto.__str__()


X
Xin Pan 已提交
215
class Variable(core.VarBase):
216
    """
217 218 219
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
220
    two variables in different blocks could have the same name.
221

222 223
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
224

225
    Most of a Variable's member variables can be setted to be None. It mean
226
    it is not available or will be specified later.
227 228

    Args:
229
        block(Block): The block that the variable belongs to.
230 231
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
232 233
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
234
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
235
            Some kinds of variable do not contain shape, just set it to None.
236 237 238
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
239
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
240
            series data.
241
            Default: None
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
264 265
    """

Y
Yu Yang 已提交
266 267
    def __init__(self,
                 block,
Y
Yu Yang 已提交
268
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
269 270 271 272
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
273
                 capacity=None,
Q
QI JUN 已提交
274
                 persistable=None,
F
fengjiayi 已提交
275
                 error_clip=None,
Y
Yu Yang 已提交
276
                 stop_gradient=False,
F
fengjiayi 已提交
277
                 is_data=False,
Y
Yu Yang 已提交
278
                 **kwargs):
X
Xin Pan 已提交
279
        core.VarBase.__init__(self)
Y
Yu Yang 已提交
280
        self.block = block
F
fengjiayi 已提交
281
        self.error_clip = error_clip
Y
Yu Yang 已提交
282 283

        if name is None:
Y
Yu Yang 已提交
284
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
285
        is_new_var = False
M
minqiyang 已提交
286
        name = cpt.to_text(name)
X
Xin Pan 已提交
287
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
288

X
Xin Pan 已提交
289
        if self.desc is None:
M
minqiyang 已提交
290
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
291
            is_new_var = True
Y
Yu Yang 已提交
292

Y
Yu Yang 已提交
293 294 295
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
X
Xin Pan 已提交
296
            # sys.stderr.write('%s vs %s\n' % (self.desc.type(), type))
Y
Yu Yang 已提交
297 298 299 300 301
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
302
        if shape is not None:
Y
Yu Yang 已提交
303
            if is_new_var:
304
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
305 306 307 308 309 310 311 312
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
313
        if dtype is not None:
314
            if not isinstance(dtype, core.VarDesc.VarType):
315
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
316
            if is_new_var:
F
fengjiayi 已提交
317
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
318
            else:
F
fengjiayi 已提交
319
                old_dtype = self.dtype
Q
QI JUN 已提交
320
                if dtype != old_dtype:
Y
Yu Yang 已提交
321 322 323 324 325
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
326 327

        if lod_level is not None:
Y
Yu Yang 已提交
328
            if is_new_var:
329
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
330 331 332 333 334 335 336
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
337 338 339 340 341 342 343 344 345 346 347
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

348 349 350 351 352 353 354 355
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
356
        self.block.vars[name] = self
Y
Yu Yang 已提交
357
        self.op = None
Y
Yu Yang 已提交
358
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
359
        self.is_data = is_data
Y
Yu Yang 已提交
360

X
Xin Pan 已提交
361 362 363 364
    def numpy(self, scope):
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

X
Xin Pan 已提交
365 366 367 368 369 370
    def backward(self, scope):
        self._run_backward(scope)

    def grad(self):
        return np.array(self._grad())

371
    def __str__(self):
Y
Yang Yang(Tony) 已提交
372 373
        return self.to_string(True)

F
update  
fengjiayi 已提交
374
    def to_string(self, throw_on_error, with_details=False):
375 376 377 378
        """
        Get debug string.

        Args:
379 380
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
381
            with_details(bool): more details about variables and parameters
382 383
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
384

385 386
        Returns:
            str: The debug string.
387
        """
F
update  
fengjiayi 已提交
388 389
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
390
        protostr = self.desc.serialize_to_string()
391
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
392 393 394 395
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
396 397
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
398
        return res_str
399 400 401

    __repr__ = __str__

W
Wu Yi 已提交
402
    def _set_desc(self, input):
403 404 405 406 407 408 409 410 411
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
412 413
        self.desc = input

414 415 416 417
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
418 419 420 421
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
422 423
    @property
    def name(self):
M
minqiyang 已提交
424
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
425

T
typhoonzero 已提交
426 427 428 429
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
430 431 432
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
433
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
434 435

    @property
F
fengjiayi 已提交
436 437
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
438 439 440

    @property
    def lod_level(self):
441
        return self.desc.lod_level()
Y
Yu Yang 已提交
442

Y
Yu Yang 已提交
443 444 445 446
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
447
    def _set_error_clip(self, error_clip):
448 449 450 451 452 453 454 455 456
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
457 458
        self.error_clip = error_clip

Y
Yu Yang 已提交
459

F
fengjiayi 已提交
460 461 462
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
463

464 465
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
466 467 468 469
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
470
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
471 472 473 474 475
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
476 477 478 479
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
480 481 482 483 484 485 486 487 488
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
489
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
490 491 492 493 494 495
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
496 497 498 499 500 501 502 503
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
504 505
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
506 507
        return self.op_proto_map[type]

508 509 510 511
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
512
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
513
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
514 515
        }

F
fengjiayi 已提交
516

X
Xin Pan 已提交
517
class Operator(core.OpBase):
518
    """
519 520 521 522 523 524 525
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
526
        type(str): The type of operator. Default None.
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
547
        Block.append_op or Block._prepend_op instead.
548 549 550 551 552 553 554 555 556 557

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
558
    """
559 560 561 562
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
563
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
564
    }
565

Y
Yu Yang 已提交
566 567
    def __init__(self,
                 block,
Y
Yu Yang 已提交
568
                 desc,
Y
Yu Yang 已提交
569 570 571 572
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
X
Xin Pan 已提交
573
        core.OpBase.__init__(self)
Y
Yu Yang 已提交
574
        self.block = block
Y
Yu Yang 已提交
575
        self.desc = desc
G
gongweibao 已提交
576 577 578 579 580
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
581 582 583 584
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
585 586
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
587 588 589

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
590 591
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
592

G
gongweibao 已提交
593 594
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
595

F
fengjiayi 已提交
596 597 598 599 600
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
601
        self.desc.set_type(type)
F
fengjiayi 已提交
602
        proto = OpProtoHolder.instance().get_op_proto(type)
603

604 605 606
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
607 608
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
609
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
610 611
                    return True
            return False
Q
QI JUN 已提交
612

X
Xin Pan 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
                        if isinstance(arg, six.string_types):
                            in_arg_names.append(arg)
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
                        else:
                            in_arg_names.append(cpt.to_text(arg.name))
                    self.desc.set_input(in_proto.name, in_arg_names)
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
638

Y
Yu Yang 已提交
639
        if outputs is not None:
640 641 642 643 644 645 646
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
647 648
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
649 650 651
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
652

F
fengjiayi 已提交
653
            for out_proto in proto.outputs:
654 655 656 657
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
658 659
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
660 661 662
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
663
                    out_arg_names.append(cpt.to_text(arg.name))
664 665
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
666

X
Xin Pan 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
        input_vars = []
        for inp in inputs.values():
            if isinstance(inp, Variable):
                input_vars.append(inp)
            elif isinstance(inp, list):
                input_vars.extend(inp[:])
        self.inputs = input_vars
        output_vars = []
        for out in outputs.values():
            if isinstance(out, Variable):
                output_vars.append(out)
            elif isinstance(inp, list):
                output_vars.extend(out[:])
        self.outputs = output_vars

G
gongweibao 已提交
682 683
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
684
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
685
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
686
                attr_name = attr.name
G
gongweibao 已提交
687
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
688
                    continue
G
gongweibao 已提交
689
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
690 691
                self._update_desc_attr(attr_name, attr_val)

692
        self.desc.check_attrs()
W
Wu Yi 已提交
693
        if self._has_kernel(type):
Q
QI JUN 已提交
694
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
695
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
696

W
Wu Yi 已提交
697
    def _has_kernel(self, op_type):
698 699
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
700
    def to_string(self, throw_on_error):
701
        """
702 703
        Get debug string.

704
        Args:
705 706
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
707

708 709
        Returns:
            str: The debug string.
710 711

        """
712
        protostr = self.desc.serialize_to_string()
713
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
714 715 716 717
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
718 719 720

    __repr__ = __str__

F
fengjiayi 已提交
721 722 723 724 725
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
726
        """
727
        Get the input arguments according to the input parameter name.
728

729 730
        Args:
            name(str): The input parameter name.
731

732 733 734
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
735
        """
F
fengjiayi 已提交
736 737
        return self.desc.input(name)

W
Wu Yi 已提交
738
    def _rename_input(self, old_name, new_name):
739 740 741 742 743 744 745 746 747 748
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
749
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
750

W
Wu Yi 已提交
751
    def _rename_output(self, old_name, new_name):
752 753 754 755 756 757 758 759 760 761
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
762
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
763

F
fengjiayi 已提交
764 765 766 767
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
768 769 770 771 772 773 774 775
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
776
    def output(self, name):
777
        """
778
        Get output arguments by the output parameter name.
779

780 781
        Args:
            name(str): The output parameter name.
782

783 784 785
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
786
        """
F
fengjiayi 已提交
787 788 789 790 791 792
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

793 794 795 796 797 798 799 800
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
801
    def has_attr(self, name):
802
        """
803 804
        Whether this Operator has the attribute with name or not.

805
        Args:
806
            name(str): the attribute name.
807

808 809
        Returns:
            bool: True if has this attribute.
810 811

        """
F
fengjiayi 已提交
812 813 814
        return self.desc.has_attr(name)

    def attr_type(self, name):
815
        """
816
        Get the type of attribute by attribute's name.
817

818 819
        Args:
            name(str): the attribute name.
820

821 822
        Returns:
            core.AttrType: the attribute type.
823
        """
F
fengjiayi 已提交
824 825
        return self.desc.attr_type(name)

W
Wu Yi 已提交
826
    def _set_attr(self, name, val):
827 828 829 830 831 832 833 834 835 836
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
850 851
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
852 853
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
854
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
855 856 857 858
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
859
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
860

F
fengjiayi 已提交
861 862 863 864 865
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
866
        """
867 868
        Get the attribute by name.

869
        Args:
870
            name(str): the attribute name.
871

872 873
        Returns:
            bool|int|str|float|list: The attribute value. The return value
874 875
            can be any valid attribute type.
        """
F
fengjiayi 已提交
876
        return self.desc.attr(name)
Y
Yu Yang 已提交
877

W
Wu Yi 已提交
878
    def _block_attr_id(self, name):
879
        """
G
gongweibao 已提交
880
        Get the block attribute's id by name.
881

882 883
        Args:
            name(str): the attribute name.
884

885 886
        Returns:
            int: the block index.
887
        """
W
Wu Yi 已提交
888
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
889

W
Wu Yi 已提交
890
    def _block_attr(self, name):
G
gongweibao 已提交
891 892 893 894 895 896 897 898 899 900
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
901
        id = self._block_attr_id(name)
G
gongweibao 已提交
902 903 904
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
905
    def _blocks_attr(self, name):
G
gongweibao 已提交
906 907 908 909 910 911 912 913 914 915
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
916
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
917 918 919 920 921
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
922
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
923 924 925 926 927 928 929 930 931 932
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
933
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
934

J
JiayiFeng 已提交
935
    def all_attrs(self):
F
fengjiayi 已提交
936
        """
937 938 939
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
940
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
941 942 943 944
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
945 946
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
947
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
948 949 950
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
951
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
952 953 954 955
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
956 957
        return attr_map

Y
Yu Yang 已提交
958

Y
Yu Yang 已提交
959
class Block(object):
960 961 962 963 964 965 966 967 968 969 970 971 972 973
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
974
        use `Program._create_block()` to create a block.
975 976 977 978 979 980 981 982 983 984 985 986 987 988

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
989
    def __init__(self, program, idx):
Y
Yu Yang 已提交
990
        self.desc = program.desc.block(idx)
991
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
992
        self.ops = list()  # operator list
X
Xin Pan 已提交
993
        self._op_descs = list()
Y
Yu Yang 已提交
994
        self.program = program
995
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
996

997
    def __str__(self):
Y
Yang Yang(Tony) 已提交
998 999
        return self.to_string(True)

F
fengjiayi 已提交
1000 1001
    def to_string(self, throw_on_error, with_details=False):
        """
1002 1003
        Get debug string.

F
fengjiayi 已提交
1004 1005
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1006
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1007
            with_details(bool): more details about variables and parameters
1008 1009
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1010

1011 1012
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1013 1014 1015 1016
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1017
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1018 1019
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1020
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1021
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1022
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1023
            for op in self.ops:
F
fengjiayi 已提交
1024 1025
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1026 1027 1028
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1029 1030
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1031 1032
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1033 1034 1035

    __repr__ = __str__

Y
Yu Yang 已提交
1036 1037
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1038
        return self.desc.parent
Y
Yu Yang 已提交
1039

Y
Yu Yang 已提交
1040 1041 1042 1043
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1044
    def _set_forward_block_idx(self, idx):
1045 1046 1047 1048 1049 1050 1051 1052 1053
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1054
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1055

Y
Yu Yang 已提交
1056 1057
    @property
    def idx(self):
Y
Yu Yang 已提交
1058
        return self.desc.id
Y
Yu Yang 已提交
1059

Q
Qiao Longfei 已提交
1060
    def var(self, name):
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1074
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1075 1076 1077
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1078 1079
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1080
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1081
        return v
Q
Qiao Longfei 已提交
1082

W
Wu Yi 已提交
1083
    def _var_recursive(self, name):
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1123

Q
Qiao Longfei 已提交
1124
    def all_parameters(self):
1125
        return list(self.iter_parameters())
1126

1127
    def iter_parameters(self):
M
minqiyang 已提交
1128
        return (item[1] for item in six.iteritems(self.vars)
1129
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1130

Y
Yu Yang 已提交
1131
    def create_var(self, *args, **kwargs):
1132
        var = Variable(block=self, *args, **kwargs)
1133 1134
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1135
        return var
Y
Yu Yang 已提交
1136

Q
Qiao Longfei 已提交
1137 1138 1139
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1140
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1141 1142
        """
        Rename variable in vars and ops' inputs and outputs
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1155
        """
M
minqiyang 已提交
1156 1157
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1158

T
typhoonzero 已提交
1159
        if not self.has_var(name):
1160
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1161 1162
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1163
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1164 1165 1166 1167 1168 1169 1170
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1171
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1172 1173 1174 1175
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1176
        orig_var_type = v.type
M
minqiyang 已提交
1177
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1178
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1179
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1180
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1181 1182 1183 1184
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1185
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1186 1187 1188 1189 1190 1191 1192
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1193
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1194 1195
            var = Variable(
                self,
T
typhoonzero 已提交
1196
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1197 1198 1199 1200
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1201
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1202 1203 1204
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1205
        self._sync_with_cpp()
1206
        return var
T
typhoonzero 已提交
1207

W
Wu Yi 已提交
1208 1209
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1210
        self.desc._remove_var(cpt.to_bytes(name))
1211 1212
        del self.vars[name]

Y
Yu Yang 已提交
1213 1214
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1215
        param = Parameter(global_block, *args, **kwargs)
1216
        if 'initializer' in kwargs:
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1237
        return param
Y
Yu Yang 已提交
1238

Y
Yu Yang 已提交
1239
    def append_op(self, *args, **kwargs):
1240 1241 1242 1243 1244 1245
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
X
Xin Pan 已提交
1246 1247 1248
        if _in_imperative_mode():
            op_desc = core.OpDesc()
            op = Operator(block=self, desc=op_desc, *args, **kwargs)
X
Xin Pan 已提交
1249
            _imperative_tracer().trace(op, op.inputs, op.outputs)
X
Xin Pan 已提交
1250 1251 1252
        else:
            op_desc = self.desc.append_op()
            op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1253
        self.ops.append(op)
X
Xin Pan 已提交
1254
        self._op_descs.append(op_desc)
Y
Yu Yang 已提交
1255 1256
        return op

W
Wu Yi 已提交
1257
    def _insert_op(self, index, *args, **kwargs):
1258 1259 1260 1261 1262 1263 1264 1265 1266
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1267 1268
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1269 1270 1271 1272
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1273
    def _remove_op(self, index):
1274 1275 1276 1277 1278 1279 1280 1281 1282
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1283 1284
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1285 1286
        del self.ops[index]

W
Wu Yi 已提交
1287
    def _slice_ops(self, start, end):
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1298
        return self.ops[start:end]
Y
Yancey1989 已提交
1299

W
Wu Yi 已提交
1300 1301
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1302
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1303
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1304 1305
        return op

W
Wu Yi 已提交
1306
    def _sync_with_cpp(self):
1307
        """
1308 1309
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1310
        """
Q
Qiao Longfei 已提交
1311 1312 1313 1314 1315
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1316
        # sync variables removed from c++ end
1317
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1318
            if not self.desc.find_var(cpt.to_bytes(var)):
1319 1320
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1321
        # sync operators from cpp
1322 1323 1324 1325
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1342 1343 1344 1345 1346

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1347
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1348 1349 1350 1351 1352 1353 1354

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1368 1369 1370 1371
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1372
    def _copy_param_info_from(self, other):
1373
        """
1374 1375
        Copy the information of parameters from the other block.

1376
        Args:
1377 1378 1379 1380 1381
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1382 1383 1384 1385 1386

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1387 1388
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1389
        for p in other.iter_parameters():
1390 1391 1392
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1393
                raise ValueError("_copy_param_info_from should be invoked with "
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1406
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1407
                error_clip=p.error_clip,
1408 1409 1410
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1411
    def _clone_variable(self, var):
1412 1413
        """
        Clone a variable into current block.
1414

1415 1416 1417 1418
        Args:
            var: the variable to be cloned.

        Returns:
1419
            Variable: the new  variable cloned from 'var' in current block.
1420 1421
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1422 1423 1424 1425 1426
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1427 1428
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1429
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1430 1431 1432 1433 1434 1435
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1436 1437
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1438 1439 1440 1441 1442 1443 1444
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1445 1446
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1447
        return ret_var
1448

Y
Yu Yang 已提交
1449 1450

class Program(object):
D
dzhwinter 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1462
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1463 1464

    Returns:
Y
yuyang18 已提交
1465
        A empty program.
D
dzhwinter 已提交
1466 1467

    Examples:
Y
yuyang18 已提交
1468 1469 1470 1471 1472 1473
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1474 1475 1476

    """

1477 1478
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1479 1480
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1481
        self._seed = 0
Y
yuyang18 已提交
1482
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1483
        self._op_role_var = []
T
tangwei12 已提交
1484 1485 1486 1487

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1488
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1489 1490
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1491 1492 1493

    @property
    def op_role(self):
Y
yuyang18 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1507 1508 1509 1510 1511 1512 1513 1514
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1515 1516 1517 1518 1519 1520 1521
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1522 1523 1524 1525
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1526
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1527 1528

    @contextlib.contextmanager
W
Wu Yi 已提交
1529
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1530 1531 1532 1533 1534 1535 1536
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1537
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1538 1539 1540 1541

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1542
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1543 1544
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1545 1546 1547
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1548 1549
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1550 1551 1552 1553
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1554
        yield
X
Xin Pan 已提交
1555 1556
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1557

1558
    @contextlib.contextmanager
X
Xin Pan 已提交
1559
    def _lr_schedule_guard(self, is_with_opt=False):
1560 1561 1562 1563 1564 1565 1566
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1567 1568 1569 1570
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1571 1572 1573 1574 1575 1576 1577

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1578 1579 1580 1581

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1582 1583
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1584 1585
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1586 1587 1588
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1589 1590
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1591

1592
    def __str__(self):
Y
yuyang18 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1602 1603
        return self.to_string(True)

F
fengjiayi 已提交
1604 1605 1606
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1607

F
fengjiayi 已提交
1608
        Args:
Y
yuyang18 已提交
1609 1610
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1611

Y
yuyang18 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1632 1633
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1634 1635
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1636

W
Wu Yi 已提交
1637
    def _get_desc(self):
Y
yuyang18 已提交
1638 1639 1640 1641 1642 1643 1644
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1645 1646
        return self.desc

X
version  
Xin Pan 已提交
1647 1648 1649
    def _version(self):
        return self.desc._version()

1650
    def clone(self, for_test=False):
Y
yuyang18 已提交
1651 1652 1653
        """
        Create a new, duplicated program.

1654

Y
yuyang18 已提交
1655 1656 1657 1658
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1659

Y
yuyang18 已提交
1660 1661 1662 1663
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1664 1665 1666 1667 1668
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1669 1670

        Args:
Y
yuyang18 已提交
1671 1672
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1673

D
dzhwinter 已提交
1674
        Returns:
Y
yuyang18 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1728 1729
        """
        if for_test:
X
Xin Pan 已提交
1730
            p = self._inference_optimize(prune_read_op=False)
1731
        else:
1732
            p = Program()
G
gongweibao 已提交
1733 1734
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1735
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1736 1737 1738
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1739 1740 1741 1742

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1743
            p._sync_with_cpp()
1744

W
Wu Yi 已提交
1745
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1746
        p._copy_data_info_from(self)
1747
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1748
        return p
1749

W
Wu Yi 已提交
1750
    def _prune(self, targets):
Y
yuyang18 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1766 1767 1768 1769 1770 1771
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1772 1773
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1774
                    # and we need to find the current op that generate this
1775 1776 1777 1778 1779 1780 1781 1782
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1783
                    t = t.op
1784 1785 1786 1787
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1788
                else:
1789 1790
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1791 1792 1793 1794

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1795 1796 1797
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1798
        res._sync_with_cpp()
1799 1800
        return res

X
Xin Pan 已提交
1801
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1802
        """
F
fengjiayi 已提交
1803 1804 1805 1806 1807
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1808
        3. change the :code:`is_test`
Y
yuyang18 已提交
1809 1810 1811
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1812
        Args:
X
Xin Pan 已提交
1813 1814
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1815

Y
yuyang18 已提交
1816 1817 1818 1819 1820 1821
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1822
        res = Program()
1823
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1824 1825 1826 1827

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1828
        if prune_read_op:
1829 1830 1831 1832 1833 1834 1835 1836 1837
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1838
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1839 1840

        # change all `is_test` attributes to True
M
minqiyang 已提交
1841
        for i in six.moves.range(res.desc.num_blocks()):
1842
            block = res.desc.block(i)
M
minqiyang 已提交
1843
            for j in six.moves.range(block.op_size()):
1844 1845
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1846
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1847 1848 1849
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1850
        res._sync_with_cpp()
1851 1852
        return res

1853 1854
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1855 1856 1857 1858 1859 1860 1861
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1862
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1863 1864 1865 1866

        Returns:
            Program: A deserialized program desc.
        """
1867 1868
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1869
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1870
        p._sync_with_cpp()
1871
        return p
Y
Yu Yang 已提交
1872

D
dzhwinter 已提交
1873 1874
    @property
    def random_seed(self):
Y
yuyang18 已提交
1875 1876 1877 1878 1879 1880
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1881 1882
        return self._seed

Q
qiaolongfei 已提交
1883 1884
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1885 1886 1887
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1888 1889
        return self.desc.num_blocks()

D
dzhwinter 已提交
1890 1891 1892 1893 1894 1895
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1896
    def __repr__(self):
1897
        return self.__str__()
1898

Y
Yu Yang 已提交
1899
    def global_block(self):
Y
yuyang18 已提交
1900 1901 1902
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1903 1904
        return self.blocks[0]

Q
Qiao Longfei 已提交
1905
    def block(self, index):
Y
yuyang18 已提交
1906 1907 1908 1909 1910 1911 1912 1913
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1914 1915
        return self.blocks[index]

Y
Yu Yang 已提交
1916
    def current_block(self):
Y
yuyang18 已提交
1917 1918 1919 1920
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1921 1922
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1923
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1934
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1935 1936 1937
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1938 1939 1940 1941
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1942
    def _rollback(self):
Y
yuyang18 已提交
1943 1944 1945 1946 1947
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1948 1949
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1950
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1961 1962 1963
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1964
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1965

W
Wu Yi 已提交
1966
    def _copy_param_info_from(self, other):
1967
        """
1968
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1969

Y
yuyang18 已提交
1970 1971 1972
        Notes: This is a very low level API. Users should not invoke it
        directly.

1973 1974 1975 1976 1977 1978 1979
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1980
            raise TypeError("_copy_param_info_from should be invoked with "
1981 1982 1983
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1984
            raise ValueError("_copy_param_info_from should be invoked with two "
1985
                             "program, with represent the same topology")
W
Wu Yi 已提交
1986
        self.global_block()._copy_param_info_from(other.global_block())
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2007
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2008 2009
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2010

Y
yuyang18 已提交
2011 2012 2013
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2014 2015 2016 2017 2018 2019 2020
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2021
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2022 2023 2024
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2025
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2026
                             "program, with represent the same topology")
2027
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2028 2029 2030
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2031
    def list_vars(self):
Y
yuyang18 已提交
2032 2033 2034 2035 2036 2037
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2038
        for each_block in self.blocks:
2039
            for each_var in list(each_block.vars.values()):
2040 2041
                yield each_var

Y
Yu Yang 已提交
2042

Y
Yu Yang 已提交
2043
class Parameter(Variable):
2044
    """
2045
    Parameter is derived from Variable. A parameter is a persistable
2046
    Variable, and will be updated by optimizers after each iteration.
2047
    The training of a neural network is essentially the updating of
2048 2049
    its parameters.

2050
    Relative to a general Variable, a Parameter has several its own
2051 2052
    member variables:

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2065 2066
    """

Y
Yu Yang 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2077 2078 2079

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2080 2081 2082 2083
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2084 2085
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2086
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2087

W
wanghaoshuang 已提交
2088
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2089

F
fengjiayi 已提交
2090 2091 2092
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2093 2094 2095
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2096

F
update  
fengjiayi 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2111
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2112
            for attr_name in additional_attr:
2113 2114
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2115 2116
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2117 2118 2119 2120
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2121

Y
Yu Yang 已提交
2122
# program is a global instance.
Y
Yu Yang 已提交
2123 2124
_main_program_ = Program()
_startup_program_ = Program()
2125

2126

2127
def default_startup_program():
Y
Yu Yang 已提交
2128
    """
Y
yuyang18 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2138

Y
Yu Yang 已提交
2139 2140 2141
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2142
    return _startup_program_
2143

2144

2145
def default_main_program():
Y
Yu Yang 已提交
2146
    """
Y
yuyang18 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2156

Y
Yu Yang 已提交
2157 2158 2159
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2160
    return _main_program_
Y
Yu Yang 已提交
2161 2162 2163 2164 2165


def switch_main_program(program):
    """
    Switch the main program to a new program.
2166

Y
Yu Yang 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2181
    Switch the startup program to a new program
Y
Yu Yang 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2197 2198 2199
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2200

Y
Yu Yang 已提交
2201
    Examples:
Y
yuyang18 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2212

Y
Yu Yang 已提交
2213
    Examples:
Y
yuyang18 已提交
2214 2215 2216 2217 2218 2219

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2220

Y
Yu Yang 已提交
2221
    Args:
Y
yuyang18 已提交
2222
        main_program(Program): New main program inside `with` statement.
2223
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2237 2238


W
Wu Yi 已提交
2239
def _get_var(name, program=None):
X
xuwei06 已提交
2240
    """
Y
yuyang18 已提交
2241
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2242

X
xuwei06 已提交
2243 2244 2245
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2246
        If None, default_global_program() will be used.
X
xuwei06 已提交
2247 2248 2249 2250 2251 2252 2253

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2254
    assert isinstance(program, Program)
X
xuwei06 已提交
2255 2256

    return program.global_block().var(name)
X
Xin Pan 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265


@contextlib.contextmanager
def _imperative_guard():
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = core.Tracer()
    yield
    _imperative_tracer_ = tmp_trace