framework.py 68.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21

Y
Yu Yang 已提交
22
import numpy as np
Q
qiaolongfei 已提交
23

M
minqiyang 已提交
24
from .. import compat as cpt
25
from .proto import framework_pb2
26 27
try:
    from . import core
28
except ImportError as e:
29 30 31 32
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
33
    directory. The original error is: \n""" + cpt.get_exception_message(e))
34
except Exception as e:
35
    raise e
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40
    'Program',
    'Operator',
F
fengjiayi 已提交
41
    'Parameter',
42 43 44
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
45
    'get_var',
46
]
Y
Yu Yang 已提交
47

Q
qiaolongfei 已提交
48 49 50 51 52 53 54 55
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
56 57
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
58 59 60
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
61

62
def convert_np_dtype_to_dtype_(np_dtype):
63 64
    """
    Convert the data type in numpy to the data type in Paddle
65

66
    Args:
67
        np_dtype(np.dtype): the data type in numpy.
68

69 70
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
71 72

    """
73 74
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
75
        return core.VarDesc.VarType.FP32
76
    elif dtype == np.float64:
77
        return core.VarDesc.VarType.FP64
78
    elif dtype == np.float16:
79
        return core.VarDesc.VarType.FP16
80
    elif dtype == np.int32:
81
        return core.VarDesc.VarType.INT32
82
    elif dtype == np.int16:
83
        return core.VarDesc.VarType.INT16
84
    elif dtype == np.int64:
85
        return core.VarDesc.VarType.INT64
86
    elif dtype == np.bool:
87
        return core.VarDesc.VarType.BOOL
88 89
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
90 91
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
92
    else:
M
minqiyang 已提交
93
        raise ValueError("Not supported numpy dtype %s" % dtype)
94 95 96


def dtype_is_floating(dtype):
97 98 99
    """
    Check the data type is floating or not.
    Args:
100
        dtype(np.dtype|core.VarDesc.VarType): data type.
101 102 103 104 105
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
106
    if not isinstance(dtype, core.VarDesc.VarType):
107 108
        dtype = convert_np_dtype_to_dtype_(dtype)

109 110 111 112
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
113 114


Y
Yang Yang(Tony) 已提交
115
def _debug_string_(proto, throw_on_error=True):
116 117 118 119 120 121 122 123 124 125 126
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
127
    error_fields = list()
Y
Yang Yang(Tony) 已提交
128
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
129 130
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
131 132 133
    return proto.__str__()


Y
Yu Yang 已提交
134
class Variable(object):
135
    """
136 137 138
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
139
    two variables in different blocks could have the same name.
140

141 142
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
143

144
    Most of a Variable's member variables can be setted to be None. It mean
145
    it is not available or will be specified later.
146 147

    Args:
148
        block(Block): The block that the variable belongs to.
149 150
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
151 152
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
153
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
154
            Some kinds of variable do not contain shape, just set it to None.
155 156 157
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
158
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
159
            series data.
160
            Default: None
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
183 184
    """

Y
Yu Yang 已提交
185 186
    def __init__(self,
                 block,
Y
Yu Yang 已提交
187
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
188 189 190 191
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
192
                 capacity=None,
Q
QI JUN 已提交
193
                 persistable=None,
F
fengjiayi 已提交
194
                 error_clip=None,
Y
Yu Yang 已提交
195
                 stop_gradient=False,
F
fengjiayi 已提交
196
                 is_data=False,
Y
Yu Yang 已提交
197
                 **kwargs):
Y
Yu Yang 已提交
198
        self.block = block
F
fengjiayi 已提交
199
        self.error_clip = error_clip
Y
Yu Yang 已提交
200 201

        if name is None:
Y
Yu Yang 已提交
202
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
203
        is_new_var = False
M
minqiyang 已提交
204
        name = cpt.to_text(name)
M
minqiyang 已提交
205
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
206 207

        if self.desc is None:
M
minqiyang 已提交
208
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
209
            is_new_var = True
Y
Yu Yang 已提交
210

Y
Yu Yang 已提交
211 212 213 214 215 216 217 218
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
219
        if shape is not None:
Y
Yu Yang 已提交
220
            if is_new_var:
221
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
222 223 224 225 226 227 228 229
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
230
        if dtype is not None:
231
            if not isinstance(dtype, core.VarDesc.VarType):
232
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
233
            if is_new_var:
F
fengjiayi 已提交
234
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
235
            else:
F
fengjiayi 已提交
236
                old_dtype = self.dtype
Q
QI JUN 已提交
237
                if dtype != old_dtype:
Y
Yu Yang 已提交
238 239 240 241 242
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
243 244

        if lod_level is not None:
Y
Yu Yang 已提交
245
            if is_new_var:
246
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
247 248 249 250 251 252 253
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
254 255 256 257 258 259 260 261 262 263 264
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

265 266 267 268 269 270 271 272
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
273
        self.block.vars[name] = self
Y
Yu Yang 已提交
274
        self.op = None
Y
Yu Yang 已提交
275
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
276
        self.is_data = is_data
Y
Yu Yang 已提交
277

278
    def __str__(self):
Y
Yang Yang(Tony) 已提交
279 280
        return self.to_string(True)

F
update  
fengjiayi 已提交
281
    def to_string(self, throw_on_error, with_details=False):
282 283 284 285
        """
        Get debug string.

        Args:
286 287
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
288
            with_details(bool): more details about variables and parameters
289 290
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
291

292 293
        Returns:
            str: The debug string.
294
        """
F
update  
fengjiayi 已提交
295 296
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
297
        protostr = self.desc.serialize_to_string()
298
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
299 300 301 302
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
303 304
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
305
        return res_str
306 307 308

    __repr__ = __str__

W
Wu Yi 已提交
309
    def _set_desc(self, input):
310 311 312 313 314 315 316 317 318
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
319 320
        self.desc = input

321 322 323 324
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
325 326 327 328
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
329 330
    @property
    def name(self):
M
minqiyang 已提交
331
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
332

T
typhoonzero 已提交
333 334 335 336
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
337 338 339
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
340
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
341 342

    @property
F
fengjiayi 已提交
343 344
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
345 346 347

    @property
    def lod_level(self):
348
        return self.desc.lod_level()
Y
Yu Yang 已提交
349

Y
Yu Yang 已提交
350 351 352 353
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
354
    def _set_error_clip(self, error_clip):
355 356 357 358 359 360 361 362 363
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
364 365
        self.error_clip = error_clip

Y
Yu Yang 已提交
366

F
fengjiayi 已提交
367 368 369
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
370

371 372
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
373 374 375 376
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
377
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
378 379 380 381 382
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
383 384 385 386
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
387 388 389 390 391 392 393 394 395
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
396
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
397 398 399 400 401 402
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
403 404 405 406 407 408 409 410
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
411 412
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
413 414
        return self.op_proto_map[type]

415 416 417 418 419 420 421
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
422

Y
Yu Yang 已提交
423
class Operator(object):
424
    """
425 426 427 428 429 430 431
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
432
        type(str): The type of operator. Default None.
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
453
        Block.append_op or Block._prepend_op instead.
454 455 456 457 458 459 460 461 462 463

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
464
    """
465 466 467 468 469
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
470
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
471
    }
472

Y
Yu Yang 已提交
473 474
    def __init__(self,
                 block,
Y
Yu Yang 已提交
475
                 desc,
Y
Yu Yang 已提交
476 477 478 479 480
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
481
        self.desc = desc
G
gongweibao 已提交
482 483 484 485 486
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
487 488 489 490
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
491 492
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
493 494 495

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
496 497
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
498

G
gongweibao 已提交
499 500
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
501

F
fengjiayi 已提交
502 503 504 505 506
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
507
        self.desc.set_type(type)
F
fengjiayi 已提交
508
        proto = OpProtoHolder.instance().get_op_proto(type)
509

Y
Yang Yang(Tony) 已提交
510 511
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
512
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
513 514
                    return True
            return False
Q
QI JUN 已提交
515

Y
Yang Yang(Tony) 已提交
516 517 518 519 520 521 522
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
523 524 525 526
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
527 528
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
529 530 531
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
532
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
533
                            in_arg_names.append(arg)
534 535
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
536
                        else:
M
minqiyang 已提交
537
                            in_arg_names.append(cpt.to_text(arg.name))
538
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
539 540
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
541

Y
Yu Yang 已提交
542
        if outputs is not None:
543 544 545 546 547 548 549
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
550 551
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
552 553 554
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
555

F
fengjiayi 已提交
556
            for out_proto in proto.outputs:
557 558 559 560
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
561 562
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
563 564 565
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
566
                    out_arg_names.append(cpt.to_text(arg.name))
567 568
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
569

G
gongweibao 已提交
570 571
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
572
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
573
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
574
                attr_name = attr.name
G
gongweibao 已提交
575
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
576
                    continue
G
gongweibao 已提交
577
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
578 579
                self._update_desc_attr(attr_name, attr_val)

580
        self.desc.check_attrs()
581
        if self.has_kernel(type):
Q
QI JUN 已提交
582
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
583
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
584

585 586 587
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
588
    def to_string(self, throw_on_error):
589
        """
590 591
        Get debug string.

592
        Args:
593 594
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
595

596 597
        Returns:
            str: The debug string.
598 599

        """
600
        protostr = self.desc.serialize_to_string()
601
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
602 603 604 605
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
606 607 608

    __repr__ = __str__

F
fengjiayi 已提交
609 610 611 612 613
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
614
        """
615
        Get the input arguments according to the input parameter name.
616

617 618
        Args:
            name(str): The input parameter name.
619

620 621 622
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
623
        """
F
fengjiayi 已提交
624 625
        return self.desc.input(name)

T
typhoonzero 已提交
626
    def rename_input(self, old_name, new_name):
627 628 629 630 631 632 633 634 635 636
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
637 638 639
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
640 641 642 643 644 645 646 647 648 649
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
650 651
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
652 653 654 655
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
656 657 658 659 660 661 662 663
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
664
    def output(self, name):
665
        """
666
        Get output arguments by the output parameter name.
667

668 669
        Args:
            name(str): The output parameter name.
670

671 672 673
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
674
        """
F
fengjiayi 已提交
675 676 677 678 679 680
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

681 682 683 684 685 686 687 688
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
689
    def has_attr(self, name):
690
        """
691 692
        Whether this Operator has the attribute with name or not.

693
        Args:
694
            name(str): the attribute name.
695

696 697
        Returns:
            bool: True if has this attribute.
698 699

        """
F
fengjiayi 已提交
700 701 702
        return self.desc.has_attr(name)

    def attr_type(self, name):
703
        """
704
        Get the type of attribute by attribute's name.
705

706 707
        Args:
            name(str): the attribute name.
708

709 710
        Returns:
            core.AttrType: the attribute type.
711
        """
F
fengjiayi 已提交
712 713
        return self.desc.attr_type(name)

Y
yuyang18 已提交
714
    def set_attr(self, name, val):
715 716 717 718 719 720 721 722 723 724
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
738 739
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
740 741
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
742
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
743 744 745 746 747
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
748

F
fengjiayi 已提交
749 750 751 752 753
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
754
        """
755 756
        Get the attribute by name.

757
        Args:
758
            name(str): the attribute name.
759

760 761
        Returns:
            bool|int|str|float|list: The attribute value. The return value
762 763
            can be any valid attribute type.
        """
F
fengjiayi 已提交
764
        return self.desc.attr(name)
Y
Yu Yang 已提交
765

G
gongweibao 已提交
766
    def block_attr_id(self, name):
767
        """
G
gongweibao 已提交
768
        Get the block attribute's id by name.
769

770 771
        Args:
            name(str): the attribute name.
772

773 774
        Returns:
            int: the block index.
775
        """
G
gongweibao 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
822

J
JiayiFeng 已提交
823
    def all_attrs(self):
F
fengjiayi 已提交
824
        """
825 826 827
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
828
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
829 830 831 832
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
833 834
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
835
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
836 837 838 839 840 841 842 843
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
844 845
        return attr_map

Y
Yu Yang 已提交
846

Y
Yu Yang 已提交
847
class Block(object):
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
877
    def __init__(self, program, idx):
Y
Yu Yang 已提交
878
        self.desc = program.desc.block(idx)
879
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
880
        self.ops = list()  # operator list
Y
Yu Yang 已提交
881
        self.program = program
882
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
883

884
    def __str__(self):
Y
Yang Yang(Tony) 已提交
885 886
        return self.to_string(True)

F
fengjiayi 已提交
887 888
    def to_string(self, throw_on_error, with_details=False):
        """
889 890
        Get debug string.

F
fengjiayi 已提交
891 892
        Args:
            throw_on_error(bool): raise exception when self is not initialized
893
                when throw_on_error is True.
F
update  
fengjiayi 已提交
894
            with_details(bool): more details about variables and parameters
895 896
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
897

898 899
        Returns:
            str: The debug string.
F
fengjiayi 已提交
900 901 902 903
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
904
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
905 906
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
907
            for var in list(self.vars.values()):
F
fengjiayi 已提交
908
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
909
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
910
            for op in self.ops:
F
fengjiayi 已提交
911 912
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
913 914 915
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
916 917
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
918 919
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
920 921 922

    __repr__ = __str__

Y
Yu Yang 已提交
923 924
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
925
        return self.desc.parent
Y
Yu Yang 已提交
926

Y
Yu Yang 已提交
927 928 929 930
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
931
    def _set_forward_block_idx(self, idx):
932 933 934 935 936 937 938 939 940
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
941
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
942

Y
Yu Yang 已提交
943 944
    @property
    def idx(self):
Y
Yu Yang 已提交
945
        return self.desc.id
Y
Yu Yang 已提交
946

Q
Qiao Longfei 已提交
947
    def var(self, name):
948 949 950 951 952 953 954 955 956 957 958 959 960
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
961
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
962 963 964
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
965 966
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
967
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
968
        return v
Q
Qiao Longfei 已提交
969

W
Wu Yi 已提交
970
    def _var_recursive(self, name):
971 972 973 974 975 976 977 978 979 980 981 982 983
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1010

Q
Qiao Longfei 已提交
1011
    def all_parameters(self):
1012
        return list(self.iter_parameters())
1013

1014
    def iter_parameters(self):
M
minqiyang 已提交
1015
        return (item[1] for item in six.iteritems(self.vars)
1016
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1017

Y
Yu Yang 已提交
1018
    def create_var(self, *args, **kwargs):
1019
        var = Variable(block=self, *args, **kwargs)
1020 1021
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1022
        return var
Y
Yu Yang 已提交
1023

Q
Qiao Longfei 已提交
1024 1025 1026
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1027
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1028 1029
        """
        Rename variable in vars and ops' inputs and outputs
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1042
        """
M
minqiyang 已提交
1043 1044
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1045

T
typhoonzero 已提交
1046
        if not self.has_var(name):
1047
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1048 1049
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1050
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1051 1052 1053 1054 1055 1056 1057
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1058
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1059 1060 1061 1062
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1063
        orig_var_type = v.type
M
minqiyang 已提交
1064
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1065
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1066
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1067
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1068 1069 1070 1071
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1072
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1073 1074 1075 1076 1077 1078 1079
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1080
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1081 1082
            var = Variable(
                self,
T
typhoonzero 已提交
1083
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1084 1085 1086 1087
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1088
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1089 1090 1091
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1092
        self._sync_with_cpp()
1093
        return var
T
typhoonzero 已提交
1094

W
Wu Yi 已提交
1095 1096
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1097
        self.desc._remove_var(cpt.to_bytes(name))
1098 1099
        del self.vars[name]

Y
Yu Yang 已提交
1100 1101
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1102
        param = Parameter(global_block, *args, **kwargs)
1103
        if 'initializer' in kwargs:
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1124
        return param
Y
Yu Yang 已提交
1125

Y
Yu Yang 已提交
1126
    def append_op(self, *args, **kwargs):
1127 1128 1129 1130 1131 1132
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1133
        op_desc = self.desc.append_op()
1134
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1135 1136 1137
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1138
    def _insert_op(self, index, *args, **kwargs):
1139 1140 1141 1142 1143 1144 1145 1146 1147
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1148 1149
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1150 1151 1152 1153
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1154
    def _remove_op(self, index):
1155 1156 1157 1158 1159 1160 1161 1162 1163
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1164 1165
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1166 1167
        del self.ops[index]

W
Wu Yi 已提交
1168
    def _slice_ops(self, start, end):
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1179
        return self.ops[start:end]
Y
Yancey1989 已提交
1180

W
Wu Yi 已提交
1181 1182
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1183
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1184
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1185 1186
        return op

W
Wu Yi 已提交
1187
    def _sync_with_cpp(self):
1188
        """
1189 1190
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1191
        """
Q
Qiao Longfei 已提交
1192 1193 1194 1195 1196
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1197
        # sync variables removed from c++ end
1198
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1199
            if not self.desc.find_var(cpt.to_bytes(var)):
1200 1201
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1202
        # sync operators from cpp
1203 1204 1205 1206
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1223 1224 1225 1226 1227

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1228
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1229 1230 1231 1232 1233 1234 1235

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1249 1250 1251 1252
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1253
    def _copy_param_info_from(self, other):
1254
        """
1255 1256
        Copy the information of parameters from the other block.

1257
        Args:
1258 1259 1260 1261 1262
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1263 1264 1265 1266 1267

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1268 1269
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1270
        for p in other.iter_parameters():
1271 1272 1273
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1274
                raise ValueError("_copy_param_info_from should be invoked with "
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1287
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1288
                error_clip=p.error_clip,
1289 1290 1291
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1292
    def _clone_variable(self, var):
1293 1294
        """
        Clone a variable into current block.
1295

1296 1297 1298 1299
        Args:
            var: the variable to be cloned.

        Returns:
1300
            Variable: the new  variable cloned from 'var' in current block.
1301 1302
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1303 1304 1305 1306 1307
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1308 1309
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1310
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1311 1312 1313 1314 1315 1316
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1317 1318
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1319 1320 1321 1322 1323 1324 1325
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1326 1327
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1328
        return ret_var
1329

Y
Yu Yang 已提交
1330 1331

class Program(object):
D
dzhwinter 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1343
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1344 1345

    Returns:
Y
yuyang18 已提交
1346
        A empty program.
D
dzhwinter 已提交
1347 1348

    Examples:
Y
yuyang18 已提交
1349 1350 1351 1352 1353 1354
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1355 1356 1357

    """

1358 1359
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1360 1361
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1362
        self._seed = 0
Y
yuyang18 已提交
1363
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1364
        self._op_role_var = []
T
tangwei12 已提交
1365 1366 1367 1368

        # for distribute
        self._is_distributed = False
        self._is_chief = False
1369
        self._slice_vars_and_atts = []
T
tangwei12 已提交
1370 1371
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1372 1373 1374

    @property
    def op_role(self):
Y
yuyang18 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1388 1389 1390 1391 1392 1393 1394 1395
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1396 1397 1398 1399 1400 1401 1402
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1403 1404 1405 1406
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1407
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1408 1409

    @contextlib.contextmanager
1410
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1411 1412 1413 1414 1415 1416 1417
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1418
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1419 1420 1421 1422

        Examples:

            >>> p, g = backward(...)
1423
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1424 1425
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1426 1427
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1428 1429 1430 1431
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1432
        yield
Y
yuyang18 已提交
1433
        self._op_role_var = []
Y
yuyang18 已提交
1434
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1435

1436
    def __str__(self):
Y
yuyang18 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1446 1447
        return self.to_string(True)

F
fengjiayi 已提交
1448 1449 1450
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1451

F
fengjiayi 已提交
1452
        Args:
Y
yuyang18 已提交
1453 1454
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1455

Y
yuyang18 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1476 1477
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1478 1479
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1480

1481
    def get_desc(self):
Y
yuyang18 已提交
1482 1483 1484 1485 1486 1487 1488
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1489 1490
        return self.desc

1491
    def clone(self, for_test=False):
Y
yuyang18 已提交
1492 1493 1494
        """
        Create a new, duplicated program.

1495

Y
yuyang18 已提交
1496 1497 1498 1499
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1500

Y
yuyang18 已提交
1501 1502 1503 1504
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1505 1506 1507 1508 1509
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1510 1511

        Args:
Y
yuyang18 已提交
1512 1513
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1514

D
dzhwinter 已提交
1515
        Returns:
Y
yuyang18 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1569 1570
        """
        if for_test:
1571
            p = self.inference_optimize(export_for_deployment=False)
1572
        else:
1573
            p = Program()
G
gongweibao 已提交
1574 1575
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1576
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1577 1578 1579
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1580 1581 1582 1583

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1584
            p._sync_with_cpp()
1585

W
Wu Yi 已提交
1586
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1587
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1588
        return p
1589

1590
    def prune(self, targets):
Y
yuyang18 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1606 1607 1608 1609 1610 1611
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1612 1613
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1614
                    # and we need to find the current op that generate this
1615 1616 1617 1618 1619 1620 1621 1622
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1623
                    t = t.op
1624 1625 1626 1627
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1628
                else:
1629 1630
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1631 1632 1633 1634

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1635 1636 1637
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1638
        res._sync_with_cpp()
1639 1640
        return res

1641
    def inference_optimize(self, export_for_deployment=True):
Y
yuyang18 已提交
1642
        """
F
fengjiayi 已提交
1643 1644 1645 1646 1647
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1648
        3. change the :code:`is_test`
Y
yuyang18 已提交
1649 1650 1651
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1652 1653 1654 1655
        Args:
            export_for_deployment(bool): remove the read ops that are added by py_reader
                                        for cpp inference library

Y
yuyang18 已提交
1656 1657 1658 1659 1660 1661
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1662 1663
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1664
        res = Program()
1665
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1666 1667 1668 1669

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
        if export_for_deployment:
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1680
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1681 1682

        # change all `is_test` attributes to True
M
minqiyang 已提交
1683
        for i in six.moves.range(res.desc.num_blocks()):
1684
            block = res.desc.block(i)
M
minqiyang 已提交
1685
            for j in six.moves.range(block.op_size()):
1686 1687 1688
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1689 1690 1691
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1692
        res._sync_with_cpp()
1693 1694
        return res

1695 1696
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1697 1698 1699 1700 1701 1702 1703
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1704
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1705 1706 1707 1708

        Returns:
            Program: A deserialized program desc.
        """
1709 1710
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1711
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1712
        p._sync_with_cpp()
1713
        return p
Y
Yu Yang 已提交
1714

D
dzhwinter 已提交
1715 1716
    @property
    def random_seed(self):
Y
yuyang18 已提交
1717 1718 1719 1720 1721 1722
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1723 1724
        return self._seed

Q
qiaolongfei 已提交
1725 1726
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1727 1728 1729
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1730 1731
        return self.desc.num_blocks()

D
dzhwinter 已提交
1732 1733 1734 1735 1736 1737
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1738
    def __repr__(self):
1739
        return self.__str__()
1740

Y
Yu Yang 已提交
1741
    def global_block(self):
Y
yuyang18 已提交
1742 1743 1744
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1745 1746
        return self.blocks[0]

Q
Qiao Longfei 已提交
1747
    def block(self, index):
Y
yuyang18 已提交
1748 1749 1750 1751 1752 1753 1754 1755
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1756 1757
        return self.blocks[index]

Y
Yu Yang 已提交
1758
    def current_block(self):
Y
yuyang18 已提交
1759 1760 1761 1762
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1763 1764
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1765
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1776
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1777 1778 1779
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1780 1781 1782 1783 1784
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1785 1786 1787 1788 1789
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1790 1791
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1792
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1803 1804 1805
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1806
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1807

W
Wu Yi 已提交
1808
    def _copy_param_info_from(self, other):
1809
        """
1810
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1811

Y
yuyang18 已提交
1812 1813 1814
        Notes: This is a very low level API. Users should not invoke it
        directly.

1815 1816 1817 1818 1819 1820 1821
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1822
            raise TypeError("_copy_param_info_from should be invoked with "
1823 1824 1825
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1826
            raise ValueError("_copy_param_info_from should be invoked with two "
1827
                             "program, with represent the same topology")
W
Wu Yi 已提交
1828
        self.global_block()._copy_param_info_from(other.global_block())
1829

F
fengjiayi 已提交
1830 1831 1832
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1833

Y
yuyang18 已提交
1834 1835 1836
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1837 1838 1839 1840 1841 1842 1843
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1844
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1845 1846 1847
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1848
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1849
                             "program, with represent the same topology")
1850
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1851 1852 1853
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1854
    def list_vars(self):
Y
yuyang18 已提交
1855 1856 1857 1858 1859 1860
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1861
        for each_block in self.blocks:
1862
            for each_var in list(each_block.vars.values()):
1863 1864
                yield each_var

Y
Yu Yang 已提交
1865

Y
Yu Yang 已提交
1866
class Parameter(Variable):
1867
    """
1868
    Parameter is derived from Variable. A parameter is a persistable
1869
    Variable, and will be updated by optimizers after each iteration.
1870
    The training of a neural network is essentially the updating of
1871 1872
    its parameters.

1873
    Relative to a general Variable, a Parameter has several its own
1874 1875
    member variables:

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1888 1889
    """

Y
Yu Yang 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1900 1901 1902

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1903 1904 1905 1906
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1907 1908
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1909
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1910

W
wanghaoshuang 已提交
1911
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1912

F
fengjiayi 已提交
1913 1914 1915
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1916 1917 1918
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1919

F
update  
fengjiayi 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1934
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1935
            for attr_name in additional_attr:
1936 1937
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1938 1939
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1940 1941 1942 1943
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1944

Y
Yu Yang 已提交
1945
# program is a global instance.
Y
Yu Yang 已提交
1946 1947
_main_program_ = Program()
_startup_program_ = Program()
1948

1949

1950
def default_startup_program():
Y
Yu Yang 已提交
1951
    """
Y
yuyang18 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1961

Y
Yu Yang 已提交
1962 1963 1964
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1965
    return _startup_program_
1966

1967

1968
def default_main_program():
Y
Yu Yang 已提交
1969
    """
Y
yuyang18 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1979

Y
Yu Yang 已提交
1980 1981 1982
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1983
    return _main_program_
Y
Yu Yang 已提交
1984 1985 1986 1987 1988


def switch_main_program(program):
    """
    Switch the main program to a new program.
1989

Y
Yu Yang 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2004
    Switch the startup program to a new program
Y
Yu Yang 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2020 2021 2022
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2023

Y
Yu Yang 已提交
2024
    Examples:
Y
yuyang18 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2035

Y
Yu Yang 已提交
2036
    Examples:
Y
yuyang18 已提交
2037 2038 2039 2040 2041 2042

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2043

Y
Yu Yang 已提交
2044
    Args:
Y
yuyang18 已提交
2045
        main_program(Program): New main program inside `with` statement.
2046
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2060 2061 2062 2063


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2064
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2065

X
xuwei06 已提交
2066 2067 2068
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2069
        If None, default_global_program() will be used.
X
xuwei06 已提交
2070 2071 2072 2073 2074 2075 2076

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2077
    assert isinstance(program, Program)
X
xuwei06 已提交
2078 2079

    return program.global_block().var(name)