test_imperative_optimizer.py 21.9 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

M
minqiyang 已提交
17 18 19
import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
20
import six
M
minqiyang 已提交
21

M
minqiyang 已提交
22
import paddle
M
minqiyang 已提交
23 24
import paddle.fluid as fluid
from paddle.fluid import core
Z
zhongpu 已提交
25 26
from paddle.fluid.optimizer import SGDOptimizer, Adam, MomentumOptimizer, LarsMomentumOptimizer, AdagradOptimizer, AdamaxOptimizer, DpsgdOptimizer, DecayedAdagradOptimizer, AdadeltaOptimizer, RMSPropOptimizer, FtrlOptimizer, LambOptimizer
from paddle.fluid.optimizer import ModelAverage, DGCMomentumOptimizer, ExponentialMovingAverage, PipelineOptimizer, LookaheadOptimizer, RecomputeOptimizer
27
from paddle.fluid.dygraph import Linear
L
lujun 已提交
28
from paddle.fluid.dygraph.base import to_variable
M
minqiyang 已提交
29
from test_imperative_base import new_program_scope
30

Z
zhongpu 已提交
31 32 33
# Note(wangzhongpu)
# In dygraph, don't support ModelAverage, DGCMomentumOptimizer, ExponentialMovingAverage, PipelineOptimizer, LookaheadOptimizer, RecomputeOptimizer.

34

35
class MLP(fluid.Layer):
36 37
    def __init__(self, param_attr=None, bias_attr=None):
        super(MLP, self).__init__()
M
minqiyang 已提交
38

39 40
        self._fc1 = Linear(784, 10)
        self._fc2 = Linear(10, 10)
M
minqiyang 已提交
41

42 43 44 45
    def forward(self, inputs):
        y = self._fc1(inputs)
        y = self._fc2(y)
        return y
46

M
minqiyang 已提交
47

48 49
class TestImperativeOptimizerBase(unittest.TestCase):
    def setUp(self):
M
minqiyang 已提交
50
        self.batch_num = 20
M
minqiyang 已提交
51

52 53 54
    def get_optimizer_dygraph(self, parameter_list):
        raise NotImplementedError()

55
    def get_optimizer(self):
56
        raise NotImplementedError()
M
minqiyang 已提交
57

58 59 60
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
61
                image = np.array(item[0]).reshape(1, 784)
62 63 64 65 66
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

Z
zhongpu 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    def _check_exception(self, exception_message, place=None):
        seed = 90
        batch_size = 128
        if place == None:
            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()

        with fluid.dygraph.guard(place):
            try:
                fluid.default_startup_program().random_seed = seed
                fluid.default_main_program().random_seed = seed
                mlp = MLP()
                optimizer = self.get_optimizer_dygraph(
                    parameter_list=mlp.parameters())
            except Exception as e:
                assert str(e) == exception_message

    def _check_mlp(self, place=None):
M
minqiyang 已提交
85
        seed = 90
86 87
        batch_size = 128

Z
zhongpu 已提交
88 89 90 91 92
        if place == None:
            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)

        with fluid.dygraph.guard(place):
M
minqiyang 已提交
93 94 95
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

96 97 98
            mlp = MLP()
            optimizer = self.get_optimizer_dygraph(
                parameter_list=mlp.parameters())
99 100 101 102 103 104 105 106

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
M
minqiyang 已提交
107

M
minqiyang 已提交
108
            dy_param_init_value = {}
109
            for batch_id, data in enumerate(batch_py_reader()):
110
                if batch_id >= self.batch_num:
M
minqiyang 已提交
111 112
                    break

113 114
                img = data[0]
                label = data[1]
115
                label.stop_gradient = True
116

117
                img = fluid.layers.reshape(img, shape=[batch_size, -1])
118 119
                cost = mlp(img)
                avg_loss = fluid.layers.reduce_mean(cost)
L
lujun 已提交
120
                dy_out = avg_loss.numpy()
M
minqiyang 已提交
121

M
minqiyang 已提交
122
                if batch_id == 0:
123
                    for param in mlp.parameters():
L
lujun 已提交
124
                        dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
125

L
lujun 已提交
126
                avg_loss.backward()
M
minqiyang 已提交
127
                optimizer.minimize(avg_loss)
128
                mlp.clear_gradients()
M
minqiyang 已提交
129
                dy_param_value = {}
130
                for param in mlp.parameters():
L
lujun 已提交
131
                    dy_param_value[param.name] = param.numpy()
M
minqiyang 已提交
132

M
minqiyang 已提交
133 134 135 136
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

Z
zhongpu 已提交
137 138 139 140 141
            if place == None:
                place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
                ) else fluid.CUDAPlace(0)

            exe = fluid.Executor(place)
M
minqiyang 已提交
142

143
            mlp = MLP()
M
minqiyang 已提交
144
            optimizer = self.get_optimizer()
M
minqiyang 已提交
145 146 147 148 149 150
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
151
            img = fluid.layers.reshape(img, shape=[batch_size, -1])
152
            cost = mlp(img)
153
            avg_loss = fluid.layers.reduce_mean(cost)
M
minqiyang 已提交
154
            optimizer.minimize(avg_loss)
M
minqiyang 已提交
155 156 157 158

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
159
            for param in mlp.parameters():
M
minqiyang 已提交
160 161 162 163 164 165 166 167
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
168
            for batch_id, data in enumerate(train_reader()):
169
                if batch_id >= self.batch_num:
M
minqiyang 已提交
170 171
                    break

M
minqiyang 已提交
172
                static_x_data = np.array(
M
minqiyang 已提交
173 174 175 176
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

M
minqiyang 已提交
177
                fetch_list = [avg_loss.name]
M
minqiyang 已提交
178 179
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
M
minqiyang 已提交
180
                              feed={"pixel": static_x_data,
M
minqiyang 已提交
181 182 183 184 185 186 187
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]
M
minqiyang 已提交
188 189 190 191 192 193 194

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
195
            self.assertTrue(np.allclose(value, dy_param_value[key]))
M
minqiyang 已提交
196 197


198
class TestImperativeOptimizerPiecewiseDecay(TestImperativeOptimizerBase):
199 200 201 202 203 204 205 206 207
    def get_optimizer_dygraph(self, parameter_list):
        bd = [3, 6, 9]
        optimizer = SGDOptimizer(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd,
                values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]),
            parameter_list=parameter_list)
        return optimizer

208 209 210 211 212 213 214 215 216 217 218
    def get_optimizer(self):
        bd = [3, 6, 9]
        optimizer = SGDOptimizer(learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerNaturalExpDecay(TestImperativeOptimizerBase):
219 220 221 222 223 224 225 226 227 228
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = SGDOptimizer(
            learning_rate=fluid.layers.natural_exp_decay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True),
            parameter_list=parameter_list)
        return optimizer

229 230 231 232 233 234 235 236 237 238 239 240 241
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.natural_exp_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerExponentialDecay(TestImperativeOptimizerBase):
242 243 244 245 246 247 248 249 250 251
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = SGDOptimizer(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True),
            parameter_list=parameter_list)
        return optimizer

252 253 254 255 256 257 258 259 260 261 262 263 264
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.exponential_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerInverseTimeDecay(TestImperativeOptimizerBase):
265 266 267 268 269 270 271 272 273 274
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = Adam(
            learning_rate=fluid.layers.inverse_time_decay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True),
            parameter_list=parameter_list)
        return optimizer

275 276 277 278 279 280 281 282 283 284 285 286 287
    def get_optimizer(self):
        optimizer = Adam(learning_rate=fluid.layers.inverse_time_decay(
            learning_rate=0.1,
            decay_steps=10000,
            decay_rate=0.5,
            staircase=True))
        return optimizer

    def test_adam(self):
        self._check_mlp()


class TestImperativeOptimizerPolynomialDecay(TestImperativeOptimizerBase):
288 289 290 291 292 293 294
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = SGDOptimizer(
            learning_rate=fluid.layers.polynomial_decay(
                learning_rate=0.1, decay_steps=5, cycle=self.cycle),
            parameter_list=parameter_list)
        return optimizer

295 296 297 298 299 300 301 302 303 304 305 306 307 308
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.polynomial_decay(
            learning_rate=0.1, decay_steps=5, cycle=self.cycle))
        return optimizer

    def test_sgd_cycle(self):
        self.cycle = True
        self._check_mlp()

    def test_sgd(self):
        self.cycle = False
        self._check_mlp()


M
minqiyang 已提交
309
class TestImperativeOptimizerCosineDecay(TestImperativeOptimizerBase):
310 311 312 313 314 315 316
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = SGDOptimizer(
            learning_rate=fluid.layers.cosine_decay(
                learning_rate=0.1, step_each_epoch=10000, epochs=120),
            parameter_list=parameter_list)
        return optimizer

M
minqiyang 已提交
317 318 319 320 321 322 323 324 325 326
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.cosine_decay(
            learning_rate=0.1, step_each_epoch=10000, epochs=120))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerNoamDecay(TestImperativeOptimizerBase):
327 328 329 330 331 332 333
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = SGDOptimizer(
            learning_rate=fluid.layers.noam_decay(
                d_model=512, warmup_steps=8000),
            parameter_list=parameter_list)
        return optimizer

M
minqiyang 已提交
334 335 336 337 338 339 340
    def get_optimizer(self):
        optimizer = SGDOptimizer(learning_rate=fluid.layers.noam_decay(
            d_model=512, warmup_steps=8000))
        return optimizer

    def test_sgd(self):
        self._check_mlp()
M
minqiyang 已提交
341 342


343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
class TestOptimizerLearningRate(unittest.TestCase):
    def test_constant_lr(self):
        with fluid.dygraph.guard():
            a = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")

            linear = fluid.dygraph.nn.Linear(10, 10)

            a = fluid.dygraph.to_variable(a)

            b = linear(a)

            loss = fluid.layers.reduce_mean(b)

            adam = fluid.optimizer.Adam(
                0.001, parameter_list=linear.parameters())

            self.assertTrue(
                np.allclose(
                    adam.current_step_lr(), 0.001, rtol=1e-06, atol=0.0))

            for i in range(10):
                adam.minimize(loss)
                lr = adam.current_step_lr()

                self.assertTrue(np.allclose(lr, 0.001, rtol=1e-06, atol=0.0))

    def test_lr_decay(self):
        with fluid.dygraph.guard():
            a = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")

            linear = fluid.dygraph.nn.Linear(10, 10)

            a = fluid.dygraph.to_variable(a)

            b = linear(a)

            loss = fluid.layers.reduce_mean(b)

            bd = [2, 4, 6, 8]
            value = [0.2, 0.4, 0.6, 0.8, 1.0]

            adam = fluid.optimizer.Adam(
                fluid.dygraph.PiecewiseDecay(bd, value, 0),
                parameter_list=linear.parameters())

            self.assertTrue(
                np.allclose(
                    adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0))

            ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
            for i in range(12):
                adam.minimize(loss)
                lr = adam.current_step_lr()

                self.assertTrue(np.allclose(lr, ret[i], rtol=1e-06, atol=0.0))

    def test_lr_decay_natural_exp(self):
        with fluid.dygraph.guard():
            a = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")

            linear = fluid.dygraph.nn.Linear(10, 10)

            a = fluid.dygraph.to_variable(a)

            b = linear(a)

            loss = fluid.layers.reduce_mean(b)
            base_lr = 1.0

            adam = fluid.optimizer.Adam(
                fluid.dygraph.NaturalExpDecay(
                    learning_rate=base_lr,
                    decay_steps=3,
                    decay_rate=0.5,
                    staircase=True),
                parameter_list=linear.parameters())

            self.assertTrue(
                np.allclose(
                    adam.current_step_lr(), 1.0, rtol=1e-06, atol=0.0))

            ret = [1.0, 1.0, 1.0, np.exp(-0.5), np.exp(-0.5)]
            for i in range(5):
                adam.minimize(loss)
                lr = adam.current_step_lr()

                self.assertTrue(np.allclose(lr, ret[i], rtol=1e-06, atol=0.0))


Z
zhongpu 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
class TestImperativeMomentumOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = MomentumOptimizer(
            learning_rate=0.001, momentum=0.9, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
        return optimizer

    def test_momentum(self):
        self._check_mlp()


class TestImperativeLarsMomentumOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = LarsMomentumOptimizer(
            learning_rate=0.001, momentum=0.9, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
        return optimizer

    def test_larsmomentum(self):
        self._check_mlp()


class TestImperativeAdagradOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = AdagradOptimizer(
            learning_rate=0.2, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = AdagradOptimizer(learning_rate=0.2)
        return optimizer

    def test_adagrad(self):
        self._check_mlp()


class TestImperativeAdamaxOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = AdamaxOptimizer(
            learning_rate=0.2, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = AdamaxOptimizer(learning_rate=0.2)
        return optimizer

    def test_adamax(self):
        self._check_mlp()


class TestImperativeDpsgdOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = DpsgdOptimizer(
            learning_rate=0.01,
            clip=10.0,
            batch_size=16.0,
            sigma=1.0,
            parameter_list=parameter_list)
        optimizer._seed = 100
        return optimizer

    def get_optimizer(self):
        optimizer = DpsgdOptimizer(
            learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
        optimizer._seed = 100
        return optimizer

    def test_dpsgd(self):
        self._check_mlp(place=fluid.CPUPlace())


class TestImperativeDecayedAdagradOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = DecayedAdagradOptimizer(
            learning_rate=0.2, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = DecayedAdagradOptimizer(learning_rate=0.2)
        return optimizer

    def test_decayadagrad(self):
        self._check_mlp()


class TestImperativeAdadeltaOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = AdadeltaOptimizer(
            learning_rate=0.0003,
            epsilon=1.0e-6,
            rho=0.95,
            parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = AdadeltaOptimizer(
            learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
        return optimizer

    def test_adadelta(self):
        self._check_mlp()


class TestImperativeRMSPropOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = RMSPropOptimizer(
            learning_rate=0.1, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = RMSPropOptimizer(learning_rate=0.1)
        return optimizer

    def test_rmsprop(self):
        self._check_mlp()


class TestImperativeFtrlOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = FtrlOptimizer(
            learning_rate=0.1, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = FtrlOptimizer(learning_rate=0.1)
        return optimizer

    def test_ftrl(self):
        self._check_mlp()


def exclude_fn(param):
    return param.name.endswith('.b_0')


class TestImperativeLambOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = LambOptimizer(
            learning_rate=0.002,
            exclude_from_weight_decay_fn=exclude_fn,
            parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = LambOptimizer(
            learning_rate=0.002, exclude_from_weight_decay_fn=exclude_fn)
        return optimizer

    def test_lamb(self):
        self._check_mlp()


class TestImperativeModelAverage(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = ModelAverage(
            0.15, min_average_window=10000, max_average_window=12500)
        return optimizer

    def test_modelaverage(self):
        exception_message = "In dygraph, don't support ModelAverage."
        self._check_exception(exception_message)


class TestImperativeDGCMomentumOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = DGCMomentumOptimizer(
            learning_rate=0.0001,
            momentum=0.9,
            rampup_step=1000,
            rampup_begin_step=1252,
            sparsity=[0.999, 0.999])
        return optimizer

    def test_dgcmomentum(self):
        exception_message = "In dygraph, don't support DGCMomentumOptimizer."
        self._check_exception(exception_message)


class TestImperativeExponentialMovingAverage(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = ExponentialMovingAverage(0.999)
        return optimizer

    def test_exponentialmoving(self):
        exception_message = "In dygraph, don't support ExponentialMovingAverage."
        self._check_exception(exception_message)


class TestImperativePipelineOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = fluid.optimizer.SGD(learning_rate=0.5,
                                        parameter_list=parameter_list)
        optimizer = PipelineOptimizer(optimizer)
        return optimizer

    def test_pipline(self):
        exception_message = "In dygraph, don't support PipelineOptimizer."
        self._check_exception(exception_message)


class TestImperativeLookaheadOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = fluid.optimizer.SGD(learning_rate=0.5,
                                        parameter_list=parameter_list)
        optimizer = LookaheadOptimizer(optimizer, alpha=0.5, k=5)
        return optimizer

    def test_lookahead(self):
        exception_message = "In dygraph, don't support LookaheadOptimizer."
        self._check_exception(exception_message)


class TestImperativeRecomputeOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = fluid.optimizer.SGD(learning_rate=0.5,
                                        parameter_list=parameter_list)
        optimizer = RecomputeOptimizer(optimizer)
        return optimizer

    def test_recompute(self):
        exception_message = "In dygraph, don't support RecomputeOptimizer."
        self._check_exception(exception_message)


M
minqiyang 已提交
662 663
if __name__ == '__main__':
    unittest.main()