test_imperative_optimizer.py 7.7 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

M
minqiyang 已提交
17 18 19
import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
20
import six
M
minqiyang 已提交
21

M
minqiyang 已提交
22
import paddle
M
minqiyang 已提交
23 24
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
25
from paddle.fluid.optimizer import SGDOptimizer
26
from paddle.fluid import Conv2D, Pool2D, FC
L
lujun 已提交
27
from paddle.fluid.dygraph.base import to_variable
M
minqiyang 已提交
28
from test_imperative_base import new_program_scope
29 30


31
class SimpleImgConvPool(fluid.Layer):
32
    def __init__(self,
X
Xin Pan 已提交
33
                 name_scope,
34
                 num_channels,
35
                 num_filters,
M
minqiyang 已提交
36
                 filter_size,
37 38 39 40 41 42 43 44 45 46 47 48 49
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
X
Xin Pan 已提交
50
        super(SimpleImgConvPool, self).__init__(name_scope)
51 52

        self._conv2d = Conv2D(
X
Xin Pan 已提交
53
            self.full_name(),
54 55 56 57 58 59 60 61 62 63 64 65
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
X
Xin Pan 已提交
66
            self.full_name(),
67 68 69 70 71 72
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
73

74 75 76 77
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
78 79


80
class MNIST(fluid.Layer):
81
    def __init__(self, name_scope):
X
Xin Pan 已提交
82
        super(MNIST, self).__init__(name_scope)
M
minqiyang 已提交
83

84
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
X
Xin Pan 已提交
85
            self.full_name(), 1, 20, 5, 2, 2, act="relu")
86 87

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
X
Xin Pan 已提交
88
            self.full_name(), 20, 50, 5, 2, 2, act="relu")
89

M
minqiyang 已提交
90
        pool_2_shape = 50 * 4 * 4
91 92
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
X
Xin Pan 已提交
93 94
        self._fc = FC(self.full_name(),
                      10,
95 96
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
M
minqiyang 已提交
97 98
                              loc=0.0, scale=scale)),
                      act="softmax")
M
minqiyang 已提交
99 100

    def forward(self, inputs):
101 102
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
103
        x = self._fc(x)
M
minqiyang 已提交
104 105 106
        return x


L
lujun 已提交
107
class TestDygraphMnist(unittest.TestCase):
M
minqiyang 已提交
108
    def test_mnist_float32(self):
M
minqiyang 已提交
109
        seed = 90
M
minqiyang 已提交
110
        epoch_num = 1
L
lujun 已提交
111
        with fluid.dygraph.guard():
M
minqiyang 已提交
112 113 114
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

X
Xin Pan 已提交
115
            mnist = MNIST("mnist")
M
minqiyang 已提交
116
            sgd = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
117
            train_reader = paddle.batch(
M
minqiyang 已提交
118
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
M
minqiyang 已提交
119

M
minqiyang 已提交
120
            dy_param_init_value = {}
M
minqiyang 已提交
121 122 123 124 125 126 127
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    dy_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(128, 1)
M
minqiyang 已提交
128

M
minqiyang 已提交
129 130 131
                    img = to_variable(dy_x_data)
                    label = to_variable(y_data)
                    label._stop_gradient = True
M
minqiyang 已提交
132

M
minqiyang 已提交
133 134 135
                    cost = mnist(img)
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)
M
minqiyang 已提交
136

M
minqiyang 已提交
137
                    dy_out = avg_loss._numpy()
M
minqiyang 已提交
138

M
minqiyang 已提交
139
                    if epoch == 0 and batch_id == 0:
M
minqiyang 已提交
140
                        for param in mnist.parameters():
M
minqiyang 已提交
141
                            dy_param_init_value[param.name] = param._numpy()
M
minqiyang 已提交
142

M
minqiyang 已提交
143 144 145
                    avg_loss._backward()
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()
M
minqiyang 已提交
146

M
minqiyang 已提交
147
                    dy_param_value = {}
M
minqiyang 已提交
148
                    for param in mnist.parameters():
M
minqiyang 已提交
149
                        dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
150

M
minqiyang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            for param in mnist.parameters():
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape([128, 1])

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

        for key, value in six.iteritems(static_param_value):
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
M
minqiyang 已提交
214 215 216 217


if __name__ == '__main__':
    unittest.main()