test_pool3d_op.py 36.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle
22
import paddle.fluid.core as core
23
from op_test import OpTest
24
import paddle.fluid as fluid
C
chengduoZH 已提交
25 26


27 28 29 30 31 32 33 34
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def pool3D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCDHW',
                         pool_type='max',
                         padding_algorithm="EXPLICIT"):
    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCDHW":
                input_data_shape = x.shape[2:5]
            elif data_format == "NDHWC":
                input_data_shape = x.shape[1:4]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 3 or len(paddings) == 6
    is_sys = True if len(paddings) == 3 else False

    N = x.shape[0]
    C,D, H, W = [x.shape[1], x.shape[2], x.shape[3], x.shape[4]] \
        if data_format == 'NCDHW' else [x.shape[4], x.shape[1], x.shape[2],x.shape[3]]

C
chengduoZH 已提交
89 90
    if global_pool == 1:
        ksize = [D, H, W]
91 92 93 94 95 96 97 98 99
        paddings = [0 for _ in range(len(paddings))]

    pad_d_forth = paddings[0] if is_sys else paddings[0]
    pad_d_back = paddings[0] if is_sys else paddings[1]
    pad_h_up = paddings[1] if is_sys else paddings[2]
    pad_h_down = paddings[1] if is_sys else paddings[3]
    pad_w_left = paddings[2] if is_sys else paddings[4]
    pad_w_right = paddings[2] if is_sys else paddings[5]

100 101 102
    if adaptive:
        D_out, H_out, W_out = ksize
    else:
103 104 105 106 107 108 109 110 111 112 113 114 115

        D_out = (D - ksize[0] + pad_d_forth+pad_d_back + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode  else (D - ksize[0] + pad_d_forth+pad_d_back) // strides[0] + 1

        H_out = (H - ksize[1] + pad_h_up + pad_h_down + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (H - ksize[1] + pad_h_up + pad_h_down) // strides[1] + 1

        W_out = (W - ksize[2] + pad_w_left + pad_w_right + strides[2] - 1) // strides[2] + 1 \
            if ceil_mode else (W - ksize[2] + pad_w_left + pad_w_right) // strides[2] + 1


    out = np.zeros((N, C, D_out, H_out, W_out)) if data_format=='NCDHW' \
        else np.zeros((N, D_out, H_out, W_out, C))
116
    for k in range(D_out):
117 118 119
        if adaptive:
            d_start = adaptive_start_index(k, D, ksize[0])
            d_end = adaptive_end_index(k, D, ksize[0])
120

121
        for i in range(H_out):
122 123 124
            if adaptive:
                h_start = adaptive_start_index(i, H, ksize[1])
                h_end = adaptive_end_index(i, H, ksize[1])
125

126
            for j in range(W_out):
127 128 129 130
                if adaptive:
                    w_start = adaptive_start_index(j, W, ksize[2])
                    w_end = adaptive_end_index(j, W, ksize[2])
                else:
131

D
Double_V 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                    d_start = k * strides[0] - pad_d_forth
                    d_end = np.min((k * strides[0] + ksize[0] - pad_d_forth,
                                    D + pad_d_back))
                    h_start = i * strides[1] - pad_h_up
                    h_end = np.min(
                        (i * strides[1] + ksize[1] - pad_h_up, H + pad_h_down))
                    w_start = j * strides[2] - pad_w_left
                    w_end = np.min((j * strides[2] + ksize[2] - pad_w_left,
                                    W + pad_w_right))

                    field_size = (d_end - d_start) * (h_end - h_start) * (
                        w_end - w_start)
                    w_start = np.max((w_start, 0))
                    d_start = np.max((d_start, 0))
                    h_start = np.max((h_start, 0))
                    w_end = np.min((w_end, W))
                    d_end = np.min((d_end, D))
                    h_end = np.min((h_end, H))
150 151 152 153
                if data_format == 'NCDHW':
                    x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:
                                 w_end]
                    if pool_type == 'avg':
D
Double_V 已提交
154 155 156 157
                        if (exclusive or adaptive):
                            field_size = (d_end - d_start) * (
                                h_end - h_start) * (w_end - w_start)

158 159 160 161 162 163 164 165 166
                        out[:, :, k, i, j] = np.sum(x_masked,
                                                    axis=(2, 3, 4)) / field_size
                    elif pool_type == 'max':
                        out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))

                elif data_format == 'NDHWC':
                    x_masked = x[:, d_start:d_end, h_start:h_end, w_start:
                                 w_end, :]
                    if pool_type == 'avg':
D
Double_V 已提交
167 168 169 170
                        if (exclusive or adaptive):
                            field_size = (d_end - d_start) * (
                                h_end - h_start) * (w_end - w_start)

171 172 173 174
                        out[:, k, i, j, :] = np.sum(x_masked,
                                                    axis=(1, 2, 3)) / field_size
                    elif pool_type == 'max':
                        out[:, k, i, j, :] = np.max(x_masked, axis=(1, 2, 3))
C
chengduoZH 已提交
175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    return out


def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=True,
                             adaptive=False):
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="max")
C
chengduoZH 已提交
198 199 200
    return out


201 202 203 204 205
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
206
                             ceil_mode=False,
207 208
                             exclusive=True,
                             adaptive=False):
209 210 211 212 213 214 215 216 217 218 219
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="avg")
C
chengduoZH 已提交
220 221 222
    return out


C
cnn 已提交
223
class TestPool3D_Op(OpTest):
C
chengduoZH 已提交
224
    def setUp(self):
K
Kexin Zhao 已提交
225
        self.op_type = "pool3d"
226
        self.init_kernel_type()
227
        self.dtype = np.float64
C
fix bug  
chengduoZH 已提交
228
        self.init_test_case()
229 230
        self.padding_algorithm = "EXPLICIT"
        self.init_paddings()
C
chengduoZH 已提交
231
        self.init_global_pool()
K
Kexin Zhao 已提交
232
        self.init_kernel_type()
C
chengduoZH 已提交
233
        self.init_pool_type()
234
        self.init_ceil_mode()
235
        self.init_exclusive()
236
        self.init_adaptive()
237 238
        self.init_data_format()
        self.init_shape()
239
        paddle.enable_static()
C
chengduoZH 已提交
240

K
Kexin Zhao 已提交
241
        input = np.random.random(self.shape).astype(self.dtype)
242
        output = pool3D_forward_naive(
243
            input, self.ksize, self.strides, self.paddings, self.global_pool,
244
            self.ceil_mode, self.exclusive, self.adaptive, self.data_format,
245
            self.pool_type, self.padding_algorithm).astype(self.dtype)
246

K
Kexin Zhao 已提交
247
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
248 249 250 251 252

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
253 254
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
255
            'use_cudnn': self.use_cudnn,
256
            'ceil_mode': self.ceil_mode,
257
            'data_format': self.data_format,
258
            'exclusive': self.exclusive,
259 260
            'adaptive': self.adaptive,
            "padding_algorithm": self.padding_algorithm,
C
chengduoZH 已提交
261 262
        }

K
Kexin Zhao 已提交
263
        self.outputs = {'Out': output}
C
chengduoZH 已提交
264

265
    def has_cudnn(self):
266 267
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
268
    def test_check_output(self):
269
        if self.has_cudnn():
270 271 272 273
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
274 275

    def test_check_grad(self):
K
Kexin Zhao 已提交
276 277
        if self.dtype == np.float16:
            return
278
        if self.has_cudnn() and self.pool_type != "max":
279
            place = core.CUDAPlace(0)
280
            self.check_grad_with_place(place, set(['X']), 'Out')
281
        elif self.pool_type != "max":
282
            self.check_grad(set(['X']), 'Out')
C
chengduoZH 已提交
283

284 285 286 287
    def init_data_format(self):
        self.data_format = "NCDHW"

    def init_shape(self):
288
        self.shape = [1, 3, 5, 6, 5]
289 290

    def init_test_case(self):
291 292 293 294
        self.ksize = [2, 3, 1]
        self.strides = [2, 2, 3]

    def init_paddings(self):
C
chengduoZH 已提交
295
        self.paddings = [0, 0, 0]
296
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
297

K
Kexin Zhao 已提交
298
    def init_kernel_type(self):
299
        self.use_cudnn = False
C
chengduoZH 已提交
300 301 302 303 304 305 306

    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = True

307 308 309
    def init_ceil_mode(self):
        self.ceil_mode = False

310
    def init_exclusive(self):
311
        self.exclusive = True
312

313 314 315
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
316

C
cnn 已提交
317
class TestCase1(TestPool3D_Op):
318
    def init_shape(self):
319
        self.shape = [1, 3, 7, 7, 7]
320 321

    def init_test_case(self):
C
chengduoZH 已提交
322 323
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
324 325

    def init_paddings(self):
C
chengduoZH 已提交
326
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
327

C
chengduoZH 已提交
328
    def init_pool_type(self):
C
chengduoZH 已提交
329
        self.pool_type = "avg"
C
chengduoZH 已提交
330 331 332 333 334

    def init_global_pool(self):
        self.global_pool = False


C
cnn 已提交
335
class TestCase2(TestPool3D_Op):
336
    def init_shape(self):
337
        self.shape = [1, 3, 6, 7, 7]
338 339

    def init_test_case(self):
340 341 342 343
        self.ksize = [3, 3, 4]
        self.strides = [1, 3, 2]

    def init_paddings(self):
C
chengduoZH 已提交
344 345
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
346 347 348 349 350 351
    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
352

C
cnn 已提交
353
class TestCase3(TestPool3D_Op):
C
chengduoZH 已提交
354
    def init_pool_type(self):
C
chengduoZH 已提交
355 356 357
        self.pool_type = "max"


C
chengduoZH 已提交
358 359
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
360
        self.pool_type = "max"
C
chengduoZH 已提交
361 362


C
chengduoZH 已提交
363 364
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
365
        self.pool_type = "max"
C
chengduoZH 已提交
366 367


368
#--------------------test pool3d cudnn--------------------
K
Kexin Zhao 已提交
369 370


371 372 373 374 375 376
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
377

378 379 380
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
C
chengduoZH 已提交
381 382


C
cnn 已提交
383
create_test_cudnn_class(TestPool3D_Op)
384 385 386 387 388
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
K
Kexin Zhao 已提交
389 390


391 392 393 394 395 396 397
def create_test_cudnn_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
398

399 400 401 402 403
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
404

405 406 407
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
C
chengduoZH 已提交
408

K
Kexin Zhao 已提交
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
def create_test_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = False
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-2)

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestFp16Case.__name__ = cls_name
    globals()[cls_name] = TestFp16Case


C
cnn 已提交
429
create_test_cudnn_fp16_class(TestPool3D_Op)
430 431 432 433 434
create_test_cudnn_fp16_class(TestCase1)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
435 436 437 438 439 440 441

create_test_fp16_class(TestPool3D_Op)
create_test_fp16_class(TestCase1)
create_test_fp16_class(TestCase2)
create_test_fp16_class(TestCase3)
create_test_fp16_class(TestCase4)
create_test_fp16_class(TestCase5)
K
Kexin Zhao 已提交
442 443


444 445 446 447 448 449 450
# ---- test ceil mode ------
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool3DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
C
chengduoZH 已提交
451

452 453
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
454

455 456 457
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
458 459


C
cnn 已提交
460
create_test_cudnn_use_ceil_class(TestPool3D_Op)
461
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
462

C
chengduoZH 已提交
463

464 465 466 467
def create_test_use_ceil_class(parent):
    class TestPool3DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
468

469 470 471
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
472 473


474 475
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
K
Kexin Zhao 已提交
476

477 478 479 480

class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
481 482


483 484 485
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude(TestCase2):
K
Kexin Zhao 已提交
486
    def init_kernel_type(self):
487
        self.use_cudnn = True
K
Kexin Zhao 已提交
488

489 490 491 492 493 494 495 496 497
    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


498 499 500 501 502
class TestAvgPoolAdaptiveAsyOutSize(TestCase1):
    def init_adaptive(self):
        self.adaptive = True

    def init_shape(self):
503
        self.shape = [1, 3, 3, 4, 4]
504 505 506 507 508 509

    def init_test_case(self):
        self.ksize = [2, 2, 3]
        self.strides = [1, 1, 1]


510
#-------test pool3d with asymmetric padding------
C
cnn 已提交
511
class TestPool3D_Op_AsyPadding(TestPool3D_Op):
512
    def init_test_case(self):
513 514 515 516
        self.ksize = [3, 4, 3]
        self.strides = [1, 1, 2]

    def init_paddings(self):
517 518 519
        self.paddings = [0, 0, 0, 2, 3, 0]

    def init_shape(self):
520
        self.shape = [1, 3, 5, 5, 6]
521 522 523 524


class TestCase1_AsyPadding(TestCase1):
    def init_test_case(self):
525 526 527 528
        self.ksize = [3, 3, 4]
        self.strides = [1, 1, 2]

    def init_paddings(self):
529 530 531
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
532
        self.shape = [1, 3, 7, 7, 6]
533 534 535 536 537 538


class TestCase2_AsyPadding(TestCase2):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
539 540

    def init_paddings(self):
541 542 543
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
544
        self.shape = [1, 3, 7, 7, 7]
545 546 547 548 549 550


class TestCase3_AsyPadding(TestCase3):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
551 552

    def init_paddings(self):
553 554 555
        self.paddings = [1, 0, 0, 0, 1, 0]

    def init_shape(self):
556
        self.shape = [1, 3, 5, 5, 5]
K
Kexin Zhao 已提交
557

558 559 560 561 562

class TestCase4_AsyPadding(TestCase4):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
563 564

    def init_paddings(self):
565 566 567
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
568
        self.shape = [1, 3, 7, 7, 7]
569 570 571 572 573 574


class TestCase5_AsyPadding(TestCase5):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
575 576

    def init_paddings(self):
577 578 579
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
580
        self.shape = [1, 3, 7, 7, 7]
581 582


C
cnn 已提交
583
create_test_cudnn_class(TestPool3D_Op_AsyPadding)
584 585 586 587 588 589
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

C
cnn 已提交
590
create_test_cudnn_fp16_class(TestPool3D_Op_AsyPadding)
591 592 593 594 595 596
create_test_cudnn_fp16_class(TestCase1_AsyPadding)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

C
cnn 已提交
597
create_test_cudnn_use_ceil_class(TestPool3D_Op_AsyPadding)
598 599 600 601 602 603 604 605 606 607
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

608
    def init_paddings(self):
D
Double_V 已提交
609
        self.paddings = [2, 2, 1, 1, 0, 0]
610 611 612 613 614


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding(TestCase2):
K
Kexin Zhao 已提交
615 616 617
    def init_kernel_type(self):
        self.use_cudnn = True

618 619
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
620

621
    def init_paddings(self):
622
        self.paddings = [1, 0, 0, 0, 0, 0]
C
chengduoZH 已提交
623

624
    def init_shape(self):
625
        self.shape = [1, 3, 5, 5, 5]
626 627


628 629 630
class TestAvgPoolAdaptive_AsyPadding(TestCase1):
    def init_adaptive(self):
        self.adaptive = True
631

632
    def init_paddings(self):
633
        self.paddings = [1, 0, 2, 1, 2, 1]
634 635


636
# ------------ test channel_last --------------
C
cnn 已提交
637
class TestPool3D_channel_last(TestPool3D_Op):
638 639
    def init_data_format(self):
        self.data_format = "NDHWC"
640

641
    def init_shape(self):
642
        self.shape = [1, 5, 5, 6, 3]
643

644 645 646 647 648 649

class TestCase1_channel_last(TestCase1):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
650
        self.shape = [1, 7, 7, 7, 3]
651 652 653 654 655 656 657


class TestCase2_channel_last(TestCase2):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
658
        self.shape = [1, 7, 7, 5, 3]
659 660 661 662 663 664 665


class TestCase3_channel_last(TestCase3):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
666
        self.shape = [1, 5, 6, 5, 3]
667 668 669 670 671 672 673


class TestCase4_channel_last(TestCase4):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
674
        self.shape = [1, 7, 6, 7, 3]
675 676 677 678 679 680 681


class TestCase5_channel_last(TestCase5):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
682
        self.shape = [1, 7, 7, 7, 3]
683 684


C
cnn 已提交
685
create_test_cudnn_class(TestPool3D_channel_last)
686 687 688 689 690 691
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

C
cnn 已提交
692
create_test_cudnn_use_ceil_class(TestPool3D_channel_last)
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=1.00)
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
719
        self.shape = [1, 7, 7, 7, 3]
720 721 722 723 724 725 726


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
727 728 729
    def init_exclusive(self):
        self.exclusive = False

730

731 732 733 734 735 736
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
    def init_kernel_type(self):
        self.use_cudnn = True

737 738 739
    def init_exclusive(self):
        self.exclusive = False

740

741
class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
742 743 744 745
    def init_adaptive(self):
        self.adaptive = True


746
# --- asy padding
C
cnn 已提交
747
class TestPool3D_Op_AsyPadding_channel_last(TestPool3D_Op_AsyPadding):
748 749 750 751
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
752
        self.shape = [1, 5, 5, 6, 3]
753 754 755 756 757 758 759


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
760
        self.shape = [1, 7, 6, 8, 3]
761 762 763 764 765 766 767


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
768
        self.shape = [1, 6, 8, 7, 3]
769 770 771 772 773 774 775


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
776
        self.shape = [1, 5, 7, 5, 3]
777 778 779 780 781 782 783


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
784
        self.shape = [1, 6, 7, 7, 3]
785 786 787 788 789 790 791


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
792
        self.shape = [1, 7, 8, 6, 3]
793 794


C
cnn 已提交
795
create_test_cudnn_class(TestPool3D_Op_AsyPadding_channel_last)
796 797 798 799 800 801
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

C
cnn 已提交
802
create_test_cudnn_use_ceil_class(TestPool3D_Op_AsyPadding_channel_last)
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding_channel_last(
        TestCUDNNAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"


class TestAvgPoolAdaptive_AsyPadding_channel_last(
        TestAvgPoolAdaptive_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
828
        self.shape = [1, 7, 7, 7, 3]
829 830 831 832 833 834


#test padding = SAME VALID
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
835
            self.paddings = [0, 0, 0]
836 837 838 839 840 841 842
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


C
cnn 已提交
843
create_test_padding_SAME_class(TestPool3D_Op)
844 845 846 847 848 849
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

C
cnn 已提交
850
create_test_padding_SAME_class(TestPool3D_channel_last)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
866
            self.paddings = [1, 1, 1]
867 868 869 870 871 872 873
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


C
cnn 已提交
874
create_test_cudnn_padding_SAME_class(TestPool3D_Op)
875 876 877 878 879 880
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

C
cnn 已提交
881
create_test_cudnn_padding_SAME_class(TestPool3D_channel_last)
882 883 884 885 886 887 888 889 890 891
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
892
            self.paddings = [1, 1, 1]
893 894 895 896 897 898 899
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


C
cnn 已提交
900
create_test_padding_VALID_class(TestPool3D_Op)
901 902 903 904 905 906
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

C
cnn 已提交
907
create_test_padding_VALID_class(TestPool3D_channel_last)
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
923
            self.paddings = [1, 1, 1]
924 925 926 927 928 929 930
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
931
create_test_cudnn_padding_VALID_class(TestPool3D_Op)
932 933 934 935 936 937
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

C
cnn 已提交
938
create_test_cudnn_padding_VALID_class(TestPool3D_channel_last)
939 940 941 942 943 944 945 946
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


#test API
C
cnn 已提交
947
class TestPool3DAPI(unittest.TestCase):
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    def test_api(self):
        x_NDHWC = np.random.random([2, 5, 5, 5, 3]).astype("float32")
        x_NCDHW = np.random.random([2, 3, 5, 5, 5]).astype("float32")

        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCDHW = fluid.layers.data(
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 5],
            append_batch_size=False,
            dtype="float32")

        ksize = [3, 3, 3]
        out_1 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding=[1, 1, 1],
            use_cudnn=False,
            data_format="NDHWC")

        out_2 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            use_cudnn=False,
            data_format="NDHWC")

        out_3 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            use_cudnn=False,
            data_format="NCDHW")

        out_4 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[1, 2, 1, 0, 0, 1],
            use_cudnn=False,
            data_format="NCDHW")
        # test VALID
        out_5 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NDHWC")

        out_6 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NCDHW")

        # test SAME
        out_7 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
1017
            pool_stride=[1, 1, 2],
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NDHWC")

        out_8 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=[4, 4, 4],
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NCDHW")

        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
            feed={"input_NDHWC": x_NDHWC,
                  "input_NCDHW": x_NCDHW},
            fetch_list=[
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
            ])

        assert np.allclose(
            res_1,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1, 1],
                paddings=[1, 1, 1],
                data_format="NDHWC"))

        assert np.allclose(
            res_2,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NDHWC"))
        assert np.allclose(
            res_3,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_4,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 2, 1, 0, 0, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # VALID
        assert np.allclose(
            res_5,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NDHWC"))

        assert np.allclose(
            res_6,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # SAME
        assert np.allclose(
            res_7,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
1113
                strides=[1, 1, 2],
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NDHWC"))

        assert np.allclose(
            res_8,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=[4, 4, 4],
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)


C
cnn 已提交
1132
class TestPool3DAPI_Error(unittest.TestCase):
1133 1134 1135 1136 1137 1138 1139 1140
    def test_api(self):
        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")
        ksize = [3, 3, 3]

1141
        # cudnn type error
1142 1143 1144 1145 1146 1147 1148 1149 1150
        def run_1():
            out_1 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=[0],
                data_format="NDHWC")

1151
        self.assertRaises(TypeError, run_1)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

        # data_format value error
        def run_2():
            out_2 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=False,
                data_format="NDHWCC")

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
            out_3 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALIDSAME",
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
            out_4 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALID",
                use_cudnn=False,
                ceil_mode=True,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
            out_5 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1], [1, 1]],
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_5)


C
chengduoZH 已提交
1203 1204
if __name__ == '__main__':
    unittest.main()