test_pool3d_op.py 10.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
C
chengduoZH 已提交
22 23


24 25 26 27 28 29
def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False):
C
chengduoZH 已提交
30
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
31 32
    if global_pool == 1:
        ksize = [D, H, W]
33
    D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
M
minqiyang 已提交
34 35
             ) // strides[0] + 1 if ceil_mode else (
                 H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
36
    H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
M
minqiyang 已提交
37 38
             ) // strides[1] + 1 if ceil_mode else (
                 W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
39
    W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
M
minqiyang 已提交
40 41
             ) // strides[2] + 1 if ceil_mode else (
                 W - ksize[2] + 2 * paddings[2]) // strides[2] + 1
C
chengduoZH 已提交
42
    out = np.zeros((N, C, D_out, H_out, W_out))
43
    for k in range(D_out):
C
chengduoZH 已提交
44 45
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
46
        for i in range(H_out):
C
chengduoZH 已提交
47 48
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
49
            for j in range(W_out):
C
chengduoZH 已提交
50 51 52 53 54 55 56 57
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
    return out


58 59 60 61 62 63
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False):
C
chengduoZH 已提交
64
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
65 66
    if global_pool == 1:
        ksize = [D, H, W]
67
    D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
M
minqiyang 已提交
68 69
             ) // strides[0] + 1 if ceil_mode else (
                 H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
70
    H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
M
minqiyang 已提交
71 72
             ) // strides[1] + 1 if ceil_mode else (
                 W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
73
    W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
M
minqiyang 已提交
74 75
             ) // strides[2] + 1 if ceil_mode else (
                 W - ksize[2] + 2 * paddings[2]) // strides[2] + 1
C
chengduoZH 已提交
76
    out = np.zeros((N, C, D_out, H_out, W_out))
77
    for k in range(D_out):
C
chengduoZH 已提交
78 79
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
80
        for i in range(H_out):
C
chengduoZH 已提交
81 82
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
83
            for j in range(W_out):
C
chengduoZH 已提交
84 85 86 87 88 89 90 91 92 93 94
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3, 4)) / (
                    (d_end - d_start) * (h_end - h_start) * (w_end - w_start))
    return out


class TestPool3d_Op(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
95
        self.op_type = "pool3d"
96
        self.use_cudnn = False
K
Kexin Zhao 已提交
97
        self.dtype = np.float32
C
fix bug  
chengduoZH 已提交
98
        self.init_test_case()
C
chengduoZH 已提交
99
        self.init_global_pool()
K
Kexin Zhao 已提交
100
        self.init_kernel_type()
C
chengduoZH 已提交
101
        self.init_pool_type()
102
        self.init_ceil_mode()
C
chengduoZH 已提交
103

C
fix bug  
chengduoZH 已提交
104 105
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
K
Kexin Zhao 已提交
106
        input = np.random.random(self.shape).astype(self.dtype)
C
chengduoZH 已提交
107
        output = self.pool3D_forward_naive(input, self.ksize, self.strides,
108
                                           self.paddings, self.global_pool,
K
Kexin Zhao 已提交
109 110
                                           self.ceil_mode).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
111 112 113 114 115

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
116 117
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
118
            'use_cudnn': self.use_cudnn,
119
            'ceil_mode': self.ceil_mode,
120
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
C
chengduoZH 已提交
121 122
        }

K
Kexin Zhao 已提交
123
        self.outputs = {'Out': output}
C
chengduoZH 已提交
124

125 126 127
    def testcudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
128
    def test_check_output(self):
129
        if self.testcudnn():
130 131 132 133
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
134 135

    def test_check_grad(self):
K
Kexin Zhao 已提交
136 137
        if self.dtype == np.float16:
            return
138
        if self.testcudnn() and self.pool_type != "max":
139 140 141 142
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
143
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
144

C
fix bug  
chengduoZH 已提交
145
    def init_test_case(self):
C
chengduoZH 已提交
146 147 148 149 150
        self.shape = [2, 3, 5, 5, 5]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [0, 0, 0]

K
Kexin Zhao 已提交
151 152
    def init_kernel_type(self):
        pass
C
chengduoZH 已提交
153 154 155 156 157 158 159 160

    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = True

161 162 163
    def init_ceil_mode(self):
        self.ceil_mode = False

C
chengduoZH 已提交
164 165

class TestCase1(TestPool3d_Op):
C
fix bug  
chengduoZH 已提交
166
    def init_test_case(self):
C
chengduoZH 已提交
167 168 169
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
C
chengduoZH 已提交
170
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
171

C
chengduoZH 已提交
172
    def init_pool_type(self):
C
chengduoZH 已提交
173 174
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive
C
chengduoZH 已提交
175 176 177 178 179 180 181

    def init_global_pool(self):
        self.global_pool = False


class TestCase2(TestPool3d_Op):
    def init_test_case(self):
C
chengduoZH 已提交
182 183 184 185 186
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
187 188 189 190 191 192 193
    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
194 195

class TestCase3(TestPool3d_Op):
C
chengduoZH 已提交
196
    def init_pool_type(self):
C
chengduoZH 已提交
197 198 199 200
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive


C
chengduoZH 已提交
201 202
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
203 204
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
205 206


C
chengduoZH 已提交
207 208
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
209 210
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
211 212


213 214
#--------------------test pool3d--------------------
class TestCUDNNCase1(TestPool3d_Op):
K
Kexin Zhao 已提交
215
    def init_kernel_type(self):
216
        self.use_cudnn = True
K
Kexin Zhao 已提交
217 218 219 220 221 222 223 224 225 226 227 228


class TestFP16CUDNNCase1(TestPool3d_Op):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
229 230


231
class TestCUDNNCase2(TestCase1):
K
Kexin Zhao 已提交
232
    def init_kernel_type(self):
233
        self.use_cudnn = True
K
Kexin Zhao 已提交
234 235 236 237 238 239 240 241 242 243 244 245


class TestFP16CUDNNCase2(TestCase1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
246 247


248
class TestCUDNNCase3(TestCase2):
K
Kexin Zhao 已提交
249
    def init_kernel_type(self):
250
        self.use_cudnn = True
K
Kexin Zhao 已提交
251 252 253 254 255 256 257 258 259 260 261 262


class TestFP16CUDNNCase3(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
263 264


265
class TestCUDNNCase4(TestCase3):
K
Kexin Zhao 已提交
266
    def init_kernel_type(self):
267
        self.use_cudnn = True
K
Kexin Zhao 已提交
268 269 270 271 272 273 274 275 276 277 278 279


class TestFP16CUDNNCase4(TestCase3):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
280 281


282
class TestCUDNNCase5(TestCase4):
K
Kexin Zhao 已提交
283
    def init_kernel_type(self):
284
        self.use_cudnn = True
K
Kexin Zhao 已提交
285 286 287 288 289 290 291 292 293 294 295 296


class TestFP16CUDNNCase5(TestCase4):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
297 298


299
class TestCUDNNCase6(TestCase5):
K
Kexin Zhao 已提交
300
    def init_kernel_type(self):
301
        self.use_cudnn = True
K
Kexin Zhao 已提交
302 303 304 305 306 307 308 309 310 311 312 313


class TestFP16CUDNNCase6(TestCase5):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
314

C
chengduoZH 已提交
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
class TestCeilModeCase1(TestCUDNNCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase2(TestCUDNNCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase3(TestCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase4(TestCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


C
chengduoZH 已提交
336 337
if __name__ == '__main__':
    unittest.main()