test_pool3d_op.py 11.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
C
chengduoZH 已提交
22 23


24 25 26 27 28
def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
29 30
                             ceil_mode=False,
                             exclusive=True):
C
chengduoZH 已提交
31
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
32 33
    if global_pool == 1:
        ksize = [D, H, W]
34
    D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
M
minqiyang 已提交
35 36
             ) // strides[0] + 1 if ceil_mode else (
                 H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
37
    H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
M
minqiyang 已提交
38 39
             ) // strides[1] + 1 if ceil_mode else (
                 W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
40
    W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
M
minqiyang 已提交
41 42
             ) // strides[2] + 1 if ceil_mode else (
                 W - ksize[2] + 2 * paddings[2]) // strides[2] + 1
C
chengduoZH 已提交
43
    out = np.zeros((N, C, D_out, H_out, W_out))
44
    for k in range(D_out):
C
chengduoZH 已提交
45 46
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
47
        for i in range(H_out):
C
chengduoZH 已提交
48 49
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
50
            for j in range(W_out):
C
chengduoZH 已提交
51 52 53 54 55 56 57 58
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
    return out


59 60 61 62 63
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
64 65
                             ceil_mode=False,
                             exclusive=True):
C
chengduoZH 已提交
66
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
67 68
    if global_pool == 1:
        ksize = [D, H, W]
69
    D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
M
minqiyang 已提交
70 71
             ) // strides[0] + 1 if ceil_mode else (
                 H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
72
    H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
M
minqiyang 已提交
73 74
             ) // strides[1] + 1 if ceil_mode else (
                 W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
75
    W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
M
minqiyang 已提交
76 77
             ) // strides[2] + 1 if ceil_mode else (
                 W - ksize[2] + 2 * paddings[2]) // strides[2] + 1
C
chengduoZH 已提交
78
    out = np.zeros((N, C, D_out, H_out, W_out))
79
    for k in range(D_out):
C
chengduoZH 已提交
80 81
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
82
        for i in range(H_out):
C
chengduoZH 已提交
83 84
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
85
            for j in range(W_out):
C
chengduoZH 已提交
86 87 88 89
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

90 91
                field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \
                             if exclusive else ksize[0] * ksize[1] * ksize[2]
92 93
                out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3,
                                                            4)) / field_size
C
chengduoZH 已提交
94 95 96 97 98
    return out


class TestPool3d_Op(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
99
        self.op_type = "pool3d"
100
        self.use_cudnn = False
K
Kexin Zhao 已提交
101
        self.dtype = np.float32
C
fix bug  
chengduoZH 已提交
102
        self.init_test_case()
C
chengduoZH 已提交
103
        self.init_global_pool()
K
Kexin Zhao 已提交
104
        self.init_kernel_type()
C
chengduoZH 已提交
105
        self.init_pool_type()
106
        self.init_ceil_mode()
107
        self.init_exclusive()
C
chengduoZH 已提交
108

C
fix bug  
chengduoZH 已提交
109 110
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
K
Kexin Zhao 已提交
111
        input = np.random.random(self.shape).astype(self.dtype)
112 113 114
        output = self.pool3D_forward_naive(
            input, self.ksize, self.strides, self.paddings, self.global_pool,
            self.ceil_mode, self.exclusive).astype(self.dtype)
K
Kexin Zhao 已提交
115
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
116 117 118 119 120

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
121 122
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
123
            'use_cudnn': self.use_cudnn,
124
            'ceil_mode': self.ceil_mode,
125 126 127
            'data_format':
            'AnyLayout',  # TODO(dzhwinter) : should be fix latter
            'exclusive': self.exclusive
C
chengduoZH 已提交
128 129
        }

K
Kexin Zhao 已提交
130
        self.outputs = {'Out': output}
C
chengduoZH 已提交
131

132 133 134
    def testcudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
135
    def test_check_output(self):
136
        if self.testcudnn():
137 138 139 140
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
141 142

    def test_check_grad(self):
K
Kexin Zhao 已提交
143 144
        if self.dtype == np.float16:
            return
145
        if self.testcudnn() and self.pool_type != "max":
146 147 148 149
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
150
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
151

C
fix bug  
chengduoZH 已提交
152
    def init_test_case(self):
C
chengduoZH 已提交
153 154 155 156 157
        self.shape = [2, 3, 5, 5, 5]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [0, 0, 0]

K
Kexin Zhao 已提交
158 159
    def init_kernel_type(self):
        pass
C
chengduoZH 已提交
160 161 162 163 164 165 166 167

    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = True

168 169 170
    def init_ceil_mode(self):
        self.ceil_mode = False

171
    def init_exclusive(self):
172
        self.exclusive = True
173

C
chengduoZH 已提交
174 175

class TestCase1(TestPool3d_Op):
C
fix bug  
chengduoZH 已提交
176
    def init_test_case(self):
C
chengduoZH 已提交
177 178 179
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
C
chengduoZH 已提交
180
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
181

C
chengduoZH 已提交
182
    def init_pool_type(self):
C
chengduoZH 已提交
183 184
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive
C
chengduoZH 已提交
185 186 187 188 189 190 191

    def init_global_pool(self):
        self.global_pool = False


class TestCase2(TestPool3d_Op):
    def init_test_case(self):
C
chengduoZH 已提交
192 193 194 195 196
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
197 198 199 200 201 202 203
    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
204 205

class TestCase3(TestPool3d_Op):
C
chengduoZH 已提交
206
    def init_pool_type(self):
C
chengduoZH 已提交
207 208 209 210
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive


C
chengduoZH 已提交
211 212
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
213 214
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
215 216


C
chengduoZH 已提交
217 218
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
219 220
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
221 222


223 224
#--------------------test pool3d--------------------
class TestCUDNNCase1(TestPool3d_Op):
K
Kexin Zhao 已提交
225
    def init_kernel_type(self):
226
        self.use_cudnn = True
K
Kexin Zhao 已提交
227 228 229 230 231 232 233 234 235 236 237 238


class TestFP16CUDNNCase1(TestPool3d_Op):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
239 240


241
class TestCUDNNCase2(TestCase1):
K
Kexin Zhao 已提交
242
    def init_kernel_type(self):
243
        self.use_cudnn = True
K
Kexin Zhao 已提交
244 245 246 247 248 249 250 251 252 253 254 255


class TestFP16CUDNNCase2(TestCase1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
256 257


258
class TestCUDNNCase3(TestCase2):
K
Kexin Zhao 已提交
259
    def init_kernel_type(self):
260
        self.use_cudnn = True
K
Kexin Zhao 已提交
261 262 263 264 265 266 267 268 269 270 271 272


class TestFP16CUDNNCase3(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
273 274


275
class TestCUDNNCase4(TestCase3):
K
Kexin Zhao 已提交
276
    def init_kernel_type(self):
277
        self.use_cudnn = True
K
Kexin Zhao 已提交
278 279 280 281 282 283 284 285 286 287 288 289


class TestFP16CUDNNCase4(TestCase3):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
290 291


292
class TestCUDNNCase5(TestCase4):
K
Kexin Zhao 已提交
293
    def init_kernel_type(self):
294
        self.use_cudnn = True
K
Kexin Zhao 已提交
295 296 297 298 299 300 301 302 303 304 305 306


class TestFP16CUDNNCase5(TestCase4):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
307 308


309
class TestCUDNNCase6(TestCase5):
K
Kexin Zhao 已提交
310
    def init_kernel_type(self):
311
        self.use_cudnn = True
K
Kexin Zhao 已提交
312 313 314 315 316 317 318 319 320 321 322 323


class TestFP16CUDNNCase6(TestCase5):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
324

C
chengduoZH 已提交
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
class TestCeilModeCase1(TestCUDNNCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase2(TestCUDNNCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase3(TestCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase4(TestCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True

345

346 347 348 349
class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

350

351 352 353 354
class TestCUDNNAvgInclude(TestCUDNNCase3):
    def init_exclusive(self):
        self.exclusive = False

355

C
chengduoZH 已提交
356 357
if __name__ == '__main__':
    unittest.main()