conv_mkldnn_op.cc 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

inline mkldnn::memory::format GetWeightsFormat(mkldnn::memory::format format,
                                               int groups, bool is_conv3d) {
  if (is_conv3d) {
    return (groups == 1) ? format : mkldnn::memory::format::goidhw;
  } else {
    return (groups == 1) ? format : mkldnn::memory::format::goihw;
  }
}

72
template <typename T, typename K>
73
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
74 75 76 77
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
78 79 80 81 82 83 84 85
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
      ComputeINT8(ctx);
    }
  }
86

87
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
88 89
    const bool is_test = ctx.Attr<bool>("is_test");

90 91
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
92 93 94 95
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
96
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
97 98
    auto* output = ctx.Output<Tensor>("Output");

99 100 101 102 103 104
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
105
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
Y
Yihua Xu 已提交
106
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
107 108
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
109 110 111 112 113 114 115
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
116 117 118 119

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
120
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
121
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
122 123
    bool fuse_brelu = false;
    float fuse_brelu_threshold = 6.0;
124
    int groups = ctx.Attr<int>("groups");
125
    bool is_conv3d = strides.size() == 3U;
126 127 128 129
    if (!is_conv3d) {
      fuse_brelu = ctx.Attr<bool>("fuse_brelu");
      fuse_brelu_threshold = ctx.Attr<float>("fuse_brelu_threshold");
    }
130
    // TODO(tpatejko): add support for dilation
131
    PADDLE_ENFORCE(
132 133 134 135
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
136 137 138 139 140 141 142 143
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
144
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
145
    GetWeightsTz(weights_tz, g, is_conv3d);
146 147
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

148
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
149
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
150 151
        src_tz, weights_tz, fuse_relu, fuse_brelu, strides, paddings, dilations,
        groups, ctx.op().Input("Input") + ctx.op().Input("Filter"));
152 153 154

    std::vector<primitive> pipeline;

155 156 157 158 159 160 161 162
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
163 164 165 166 167

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
168 169 170 171
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

172
    weights_format = mkldnn::memory::format::any;
173 174 175 176 177 178
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
179 180
    }

181
    auto src_md = platform::MKLDNNMemDesc(
182
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
183
    auto weights_md = platform::MKLDNNMemDesc(
184
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
185 186
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
187
    auto dst_md = platform::MKLDNNMemDesc(
188
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
189

190 191
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

192
    // create a conv primitive descriptor and save it for usage in backward
193
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
194 195
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
196 197 198 199
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
200
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
201
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
202 203
          fuse_relu, fuse_residual_conn, fuse_brelu, fuse_brelu_threshold,
          fwd_prop_kind);
204
    } else {
205 206
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
207 208
          mkldnn_engine, fuse_relu, fuse_residual_conn, fuse_brelu,
          fuse_brelu_threshold, fwd_prop_kind);
209
    }
210

211
    // create mkldnn memory from input tensors (data/weights)
212 213
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
214
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
215
        user_weights_md, to_void_cast<T>(filter_data));
216

217 218 219 220 221
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
222 223

    std::shared_ptr<mkldnn::memory> dst_memory_p;
224

225
    if (fuse_residual_conn) {
226 227
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
228

229 230 231 232 233 234
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
235

236
      if (residual_param->format() != handler.GetDstFormat()) {
237 238
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
239 240 241 242 243 244 245 246 247
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
        auto user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T>(residual_param_data));
248 249 250

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
251 252
      } else {
        output->ShareDataWith(*residual_param);
253 254 255
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
256
      }
257
    } else {
258 259
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
260 261
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
262
    }
263 264

    // create convolution op primitive
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
281 282

    // push primitive to stream and wait until it's executed
283
    pipeline.push_back(*conv_p);
284 285
    stream(stream::kind::eager).submit(pipeline).wait();

286 287
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
288
  }
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
X
xiaolil1 已提交
324
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
X
xiaolil1 已提交
325
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
326
    bool fuse_brelu = ctx.Attr<bool>("fuse_brelu");
327
    float fuse_brelu_threshold = ctx.Attr<float>("fuse_brelu_threshold");
328
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
329
    bool unsigned_output = fuse_relu || fuse_brelu;
X
xiaolil1 已提交
330 331 332 333
    if (fuse_residual_conn) {
      PADDLE_ENFORCE(force_fp32_output != true,
                     "residual fusion does not support force output with fp32");
    }
334 335 336 337 338 339 340 341
    bool is_conv3d = strides.size() == 3U;
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
342

343 344 345 346 347 348 349 350
    PADDLE_ENFORCE(is_conv3d != true, "int8 does not support conv3d currently");

    const T* input_data = input->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
351

352 353 354
    GetWeightsTz(weights_tz, g, is_conv3d);
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
355 356
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
357

358 359 360 361 362
    auto dst_dt = unsigned_output
                      ? paddle::framework::ToMKLDNNDataType(
                            framework::DataTypeTrait<uint8_t>::DataType)
                      : paddle::framework::ToMKLDNNDataType(
                            framework::DataTypeTrait<int8_t>::DataType);
X
xiaolil1 已提交
363 364 365 366 367 368

    if (force_fp32_output) {
      dst_dt = paddle::framework::ToMKLDNNDataType(
          framework::DataTypeTrait<float>::DataType);
    }

X
xiaolil1 已提交
369 370 371 372 373 374
    if (fuse_residual_conn) {
      auto residual = ctx.Input<Tensor>("ResidualData");
      auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
      if (dst_dt != residual_dt) dst_dt = residual_dt;
    }

375 376 377 378 379
    // Get unique name for storing MKLDNN primitives
    std::string key;
    key.reserve(MaxKeyLength);
    platform::ConvMKLDNNHandler::AppendKey(
        &key, src_tz, weights_tz, strides, paddings, dilations, groups, src_dt,
380
        input->format(), fuse_relu, fuse_residual_conn, fuse_brelu,
381
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
382

383 384
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
385
    bool need_s8_to_u8 = false;
386 387 388 389
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
    std::shared_ptr<mkldnn::memory> dst_memory_p;
390
    std::vector<primitive> pipeline;
391 392
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;
393 394 395 396 397 398

    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
    auto user_src_key = key + "@user_src_mem_p";
    auto src_reorder_key = key + "@src_mem_preorder_p";
X
xiaolil1 已提交
399 400
    auto residual_reorder_key = key + "@residual_data_mem_preorder_p";

401 402
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));
X
xiaolil1 已提交
403

404 405 406
    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
X
xiaolil1 已提交
407
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
408 409 410
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
X
xiaolil1 已提交
411 412
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
429 430 431
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
      }

      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? mkldnn::memory::format::oihw
                     : mkldnn::memory::format::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
X
xiaolil1 已提交
457

458
      // create a conv primitive descriptor and save it for usage in backward
459 460 461
      // TODO(lidanqing): We use relu post-op instead of brelu post-op cause
      // mkldnn v0.18 does not support INT8 brelu post-op. Use code in /**/ when
      // v0.20 is enabled
462
      std::shared_ptr<memory::desc> bias_md_p;
463 464
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
465 466
        bias_md_p = std::make_shared<memory::desc>(platform::MKLDNNMemDesc(
            bias_tz, memory::data_type::s32, memory::format::x));
467
      }
468 469 470 471 472
      conv_pd = ConvFwdPrimitiveDesc(
          src_md, weights_md, bias_md_p, dst_md, strides, paddings,
          mkldnn_engine, fuse_relu || fuse_brelu /*fuse_relu*/,
          fuse_residual_conn, false /*fuse_brelu*/, fuse_brelu_threshold,
          output_shift_scale, sum_scale, is_test);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);
      handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                    mkldnn_engine, key));
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

X
xiaolil1 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());

          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p = platform::SetDstMemory<uint8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          } else {
513
            need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
514 515 516 517 518 519 520 521 522 523
            dst_memory_p = platform::SetDstMemory<int8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          }
        } else {
          output->ShareDataWith(*residual_param);
          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p =
                platform::SetDstMemory<uint8_t>(ctx, output, handler);
          } else {
524
            need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
525 526 527 528
            dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
          }
        }
      } else if (!force_fp32_output) {
529
        if (unsigned_output) {
X
xiaolil1 已提交
530 531 532 533
          dst_memory_p = platform::SetDstMemory<uint8_t>(ctx, output, handler);
        } else {
          dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
        }
534 535 536 537 538 539 540
      } else {
        dst_memory_p = platform::SetDstMemory<float>(ctx, output, handler);
      }

      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
X
xiaolil1 已提交
541
        const K* bias_data = bias->data<K>();
542
        auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
543
            {bias_tz}, platform::MKLDNNGetDataType<K>(), memory::format::x);
544
        auto user_bias_memory_p = handler->AcquireBiasMemory(
X
xiaolil1 已提交
545
            user_bias_md, to_void_cast<K>(bias_data));
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }

      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
X
xiaolil1 已提交
591 592 593 594 595 596 597 598 599 600

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        output->ShareDataWith(*residual_param);
        if (residual_dt == mkldnn::memory::data_type::u8) {
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
        } else {
601
          need_s8_to_u8 = unsigned_output;
X
xiaolil1 已提交
602 603 604 605
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
        }
      } else if (!force_fp32_output) {
606
        if (unsigned_output) {
X
xiaolil1 已提交
607 608
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
X
xiaolil1 已提交
609
        } else {
X
xiaolil1 已提交
610 611
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
X
xiaolil1 已提交
612
        }
613
      } else {
X
xiaolil1 已提交
614 615
        platform::SetDstMemoryHandler<float>(ctx, output, handler,
                                             &dst_memory_p);
616
      }
X
xiaolil1 已提交
617

618 619 620
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
X
xiaolil1 已提交
621 622 623 624 625 626 627

      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }

628 629 630 631 632
      pipeline.push_back(*conv_p);
    }
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();

X
xiaolil1 已提交
633 634 635 636
    if (need_s8_to_u8) {
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }

637 638 639
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
640

641
 private:
642
  mkldnn::primitive_attr CreatePostOps(
X
xiaolil1 已提交
643
      bool fuse_relu, bool fuse_residual_conn,
644
      const std::vector<float>& output_shift_scale, float sum_scale,
645
      bool fuse_brelu, float fuse_brelu_threshold) const {
646 647 648 649
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
    conv_attr.set_output_scales(mask, output_shift_scale);
650

X
xiaolil1 已提交
651 652 653
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
X
xiaolil1 已提交
654 655 656 657 658 659 660
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
661 662 663 664 665 666 667
    if (fuse_brelu) {
      constexpr float scale = 1.0f;
      constexpr float placeholder = 0.0f;  // beta
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_brelu_threshold, placeholder);
    }
668 669 670 671 672 673
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
674
                       const std::shared_ptr<memory::desc> bias_md_p,
675 676
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
677
                       const mkldnn::engine& engine, const bool fuse_relu,
678 679
                       const bool fuse_residual_conn, const bool fuse_brelu,
                       const float fuse_brelu_threshold,
680
                       const std::vector<float>& output_shift_scale,
X
xiaolil1 已提交
681
                       const float sum_scale, bool is_test) const {
682 683 684 685 686
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;
687 688 689 690 691 692 693 694 695 696
    auto conv_desc =
        (bias_md_p != nullptr)
            ? mkldnn::convolution_forward::desc(
                  propagation, mkldnn::convolution_direct, src, weights,
                  (*bias_md_p), dst, stride_dims, padding_dims, padding_dims,
                  mkldnn::padding_kind::zero)
            : mkldnn::convolution_forward::desc(
                  propagation, mkldnn::convolution_direct, src, weights, dst,
                  stride_dims, padding_dims, padding_dims,
                  mkldnn::padding_kind::zero);
697

698 699 700
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale,
                      sum_scale, fuse_brelu, fuse_brelu_threshold);
701 702 703 704 705 706 707

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
708 709 710
};

template <typename T>
711
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
712 713 714 715 716
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

717 718
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
719 720 721 722 723 724 725 726 727
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

728 729 730 731 732 733 734 735 736 737
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

738 739 740 741
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

742 743 744 745
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
746 747
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
748

749
    bool is_conv3d = strides.size() == 3U;
750 751 752 753 754 755 756 757 758
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
759
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
760
    GetWeightsTz(weights_tz, g, is_conv3d);
761 762
    std::vector<int> dst_tz =
        paddle::framework::vectorize2int(output_grad->dims());
763 764 765 766 767
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_brelu = false;
    if (!is_conv3d) {
      fuse_brelu = ctx.Attr<bool>("fuse_brelu");
    }
768 769
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
770
        GetWeightsFormat(filter->format(), g, is_conv3d);
771

772
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
773
    // as well as attributes of primitive to be created
774
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
775
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
776 777
        src_tz, weights_tz, fuse_relu, fuse_brelu, strides, paddings, dilations,
        groups, ctx.op().Input("Input") + ctx.op().Input("Filter"));
778 779

    const std::string key_conv_pd = key + "@conv_pd";
780
    std::vector<primitive> pipeline;
781

782 783
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
784
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
785
    auto user_weights_md = platform::MKLDNNMemDesc(
786
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
787 788
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
789 790 791 792 793

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
794 795 796 797
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

798 799 800 801 802 803 804
    weights_format = mkldnn::memory::format::any;
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
805 806
    }

807
    auto src_md = platform::MKLDNNMemDesc(
808
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
809
    auto diff_src_md = platform::MKLDNNMemDesc(
810
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
811
    auto weights_md = platform::MKLDNNMemDesc(
812
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
813
    auto diff_weights_md = platform::MKLDNNMemDesc(
814
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
815
    auto diff_dst_md = platform::MKLDNNMemDesc(
816
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
817

818
    // Retrieve conv_pd from device context
819 820 821
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
822 823 824
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
841 842 843
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
844 845 846 847 848 849 850 851 852

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

853 854
    // create backward conv primitive for weights
    if (filter_grad) {
855 856
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
857

858 859 860 861
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

862
      const size_t size = handler.GetDiffWeightsMemorySize();
863
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
864

865 866 867 868 869 870 871 872 873
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
874

875 876
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
877 878 879
    }

    if (input_grad) {
880 881 882 883 884 885 886
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

887
      const size_t size = handler.GetDiffSourceMemorySize();
888
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
889

890 891 892 893 894 895 896
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
897

898 899
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
900
    }
901
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
902
  }
903 904 905 906 907 908 909
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
910 911 912
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
913 914 915 916
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
917
                                    ops::kConvMKLDNNINT8,
918 919 920 921
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
922
                                    ops::kConvMKLDNNINT8,
923
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
924 925 926 927 928

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
929 930 931 932

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
933
                                    ops::ConvMKLDNNOpKernel<float, float>);
934 935 936 937 938

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);