control_flow.py 66.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31 32 33
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
    'equal', 'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
34 35
]

Y
Yu Yang 已提交
36

37
def split_lod_tensor(input, mask, level=0):
38 39 40 41
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
42 43
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
44 45 46 47 48

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
49
        level(int): The specific lod level to split.
50 51

    Returns:
Q
qiaolongfei 已提交
52 53 54 55
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
56 57 58 59

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
60
          x = fluid.layers.data(name='x', shape=[1])
61 62
          x.persistable = True

Q
qiaolongfei 已提交
63
          y = fluid.layers.data(name='y', shape=[1])
64 65
          y.persistable = True

Q
qiaolongfei 已提交
66
          out_true, out_false = fluid.layers.split_lod_tensor(
67
                input=x, mask=y, level=level)
68

69
    """
70
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
71 72
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
73 74 75 76 77 78 79 80 81 82 83 84
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


85
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
86 87 88 89 90
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
91 92 93
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
94 95 96 97 98 99 100

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
101
        level(int): The specific lod level to merge.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
121
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
122
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
123 124 125 126 127 128 129 130 131 132 133
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
134 135 136 137 138 139 140
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
141 142
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
143 144 145 146 147 148 149 150 151 152
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
153 154 155 156 157 158 159 160 161
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
162
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
163 164
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
165 166

    Returns:
Y
yangyaming 已提交
167
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
168

Y
Yan Chunwei 已提交
169

Y
Yan Chunwei 已提交
170
    Examples:
Y
Yan Chunwei 已提交
171

Y
Yan Chunwei 已提交
172 173
        .. code-block:: python

Y
Yan Chunwei 已提交
174 175 176
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
177 178 179 180
    '''
    helper = LayerHelper('print', **locals())
    helper.append_op(
        type='print',
Y
yangyaming 已提交
181
        inputs={'In': input},
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
190
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
191
        })
Y
Yan Chunwei 已提交
192 193


Y
Yu Yang 已提交
194 195
class BlockGuard(object):
    """
196 197 198 199
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
200 201
    """

202 203
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
204
            raise TypeError("BlockGuard takes a program")
205
        self.main_program = main_program
Y
Yu Yang 已提交
206 207

    def __enter__(self):
W
Wu Yi 已提交
208
        self.main_program._create_block()
Y
Yu Yang 已提交
209 210

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
211
        self.main_program._rollback()
Y
Yu Yang 已提交
212 213 214 215 216
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
217 218 219 220 221
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
222 223
    """

Y
Yu Yang 已提交
224
    def __init__(self, rnn):
X
Xin Pan 已提交
225
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
226
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
227
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
228 229 230 231
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
232
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
233 234

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
235 236
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
237
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
238
        self.rnn._complete_op()
Y
Yang Yang 已提交
239 240
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
241 242 243 244


class StaticRNNMemoryLink(object):
    """
245 246 247 248
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
249 250 251 252 253 254 255 256 257


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
258 259 260 261 262 263 264 265 266
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
267 268 269
    """
    StaticRNN class.

C
chengduo 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
        >>> import paddle.fluid as fluid
        >>> import paddle.fluid.layers as layers
        >>>
        >>> vocab_size, hidden_size=10000, 200
        >>> x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
        >>> x_emb = layers.embedding(
        >>>         input=x,
        >>>         size=[vocab_size, hidden_size],
        >>>         dtype='float32',
        >>>         is_sparse=False)
        >>> x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
        >>>
        >>> rnn = fluid.layers.StaticRNN()
        >>> with rnn.step():
        >>>    word = rnn.step_input(x_emb)
        >>>    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
        >>>    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
        >>>    rnn.update_memory(prev, hidden)  # set prev to hidden
        >>>    rnn.step_output(hidden)
        >>>
        >>> result = rnn()

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
308
    """
Y
Yu Yang 已提交
309 310 311 312
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

313 314
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
315 316 317 318 319 320 321 322
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
323 324 325
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
326
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
327 328 329 330 331

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

332 333 334 335 336 337 338
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
339
        """
C
chengduo 已提交
340 341 342 343 344 345
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

346
        Args:
C
chengduo 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
362
        """
Y
Yu Yang 已提交
363 364
        self._assert_in_rnn_block_('memory')
        if init is None:
365
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
366
                raise ValueError(
367
                    "if init is None, memory at least need shape and batch_ref")
368
            parent_block = self._parent_block()
Y
Yu Yang 已提交
369 370
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
371
            boot_var = parent_block.create_var(
372 373
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
374
                dtype=batch_ref.dtype,
375
                persistable=False)
Y
Yu Yang 已提交
376 377

            parent_block.append_op(
378 379
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
380 381 382
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
383
                    'shape': boot_var.shape,
F
fengjiayi 已提交
384
                    'dtype': boot_var.dtype,
385 386
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
387 388 389 390 391
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
392
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
393
                dtype=init.dtype,
Y
Yu Yang 已提交
394 395 396 397 398 399
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
400 401 402 403 404 405 406 407 408 409
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
410 411 412 413
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
414 415
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
416 417 418
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
419
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
420 421 422 423
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
424 425 426 427 428 429 430 431 432
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
433 434 435 436
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
437
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
438 439 440 441
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
442
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
443

444
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
445 446
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
447
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
448 449 450 451

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
452 453 454 455 456 457 458 459 460
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
461 462 463 464
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
465 466 467 468 469 470 471 472 473 474 475
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
476 477 478 479
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

480
    def _parent_block(self):
481
        prog = self.helper.main_program
Y
Yu Yang 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

497
    def _complete_op(self):
498 499
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
500
        parent_block = self._parent_block()
Y
Yu Yang 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
515 516 517
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
534
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
535 536 537
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
538
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
539 540
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
541 542
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
543 544
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
545 546
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
547 548 549 550
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
551
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
565
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
566 567
                'ex_states': pre_memories,
                'states': memories,
568
                'sub_block': rnn_block
Y
Yu Yang 已提交
569
            })
Y
Yu Yang 已提交
570 571


Y
Yang Yang(Tony) 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
587
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
588 589 590 591
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
592 593 594 595
    """
    while loop control flow.

    Args:
596
        cond(Variable): condition used to compare.
C
chengduo 已提交
597
        is_test(bool): A flag indicating whether execution is in test phase.
598
        name(str): The name of this layer.
X
Xin Pan 已提交
599 600 601 602

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
603 604 605
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
606

X
Xin Pan 已提交
607 608 609 610 611 612 613
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
614 615
    """

Y
Yang Yang(Tony) 已提交
616 617 618 619
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
620
    def __init__(self, cond, is_test=False, name=None):
621
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
622 623 624 625
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
626
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
627 628 629 630
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
631
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
632 633 634 635

    def block(self):
        return WhileGuard(self)

636
    def _complete(self):
Y
Yang Yang(Tony) 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
656 657 658
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
659 660 661 662 663 664 665

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
666 667 668 669
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
670 671 672 673
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
674 675
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
676 677


678
def lod_rank_table(x, level=0):
679 680
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
681 682
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
683
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
684 685 686
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
687 688 689 690

        .. code-block:: text

            x is a LoDTensor:
691 692
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
693 694
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
695 696 697
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
698

Y
yangyaming 已提交
699 700 701 702 703 704 705 706 707
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
708 709 710 711

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
712 713
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
714 715 716 717 718 719 720 721

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
722
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
723
            out = layers.lod_rank_table(x=x, level=0)
724
    """
Y
Yu Yang 已提交
725 726 727
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
728
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
729 730 731 732 733 734
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
735 736


Y
yuyang18 已提交
737
@templatedoc()
738
def max_sequence_len(rank_table):
Y
yuyang18 已提交
739 740 741 742 743 744 745 746
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
747 748

    Args:
Y
yuyang18 已提交
749
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
750 751

    Returns:
Y
yuyang18 已提交
752
        ${out_comment}.
F
fengjiayi 已提交
753 754
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
755
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
756 757 758 759 760 761 762
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


763
def lod_tensor_to_array(x, table):
764
    """
F
fengjiayi 已提交
765 766
    Convert a LoDTensor to a LoDTensorArray.

767 768 769 770 771
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
772
    Users should not use it directly.
773 774

    Args:
F
fengjiayi 已提交
775
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
776 777
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
778
                                descending order. It is generally generated
F
fengjiayi 已提交
779
                                by `layers.lod_rank_table()` API.
780 781

    Returns:
F
fengjiayi 已提交
782
        Variable: The LoDTensorArray that has been converted from the input tensor.
783 784 785 786 787 788 789

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
790
    """
791 792
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
793
        name=unique_name.generate("lod_tensor_to_array"),
794
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
795
        dtype=x.dtype)
796 797 798 799 800 801 802 803
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


804
def array_to_lod_tensor(x, table):
805
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
806 807

    Args:
808
        x (Variable|list): The lod tensor array to be converted to a tensor.
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
824
    """
825
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
826
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
827 828 829 830 831 832 833 834
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


835
def increment(x, value=1.0, in_place=True):
836
    """
S
sneaxiy 已提交
837
    This function performs an operation that increments the value in the
838
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
839 840
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
841 842 843 844 845 846 847

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
848
        Variable: The elementwise-incremented object.
849 850 851 852

    Examples:
        .. code-block:: python

S
sneaxiy 已提交
853 854
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
855
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
856
    """
Y
Yu Yang 已提交
857
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
858
    if not in_place:
X
Xin Pan 已提交
859
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
860 861
    else:
        out = x
Y
Yu Yang 已提交
862 863 864
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
865
        outputs={'Out': [out]},
866
        attrs={'step': float(value)})
Y
Yang Yu 已提交
867
    return out
Y
Yu Yang 已提交
868 869


870
def array_write(x, i, array=None):
871 872 873 874 875
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
876 877 878

    Args:
        x (Variable|list): The input tensor from which the data will be read.
879 880 881 882 883 884 885 886
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

887
    Returns:
888
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
889 890

    Examples:
D
dzhwinter 已提交
891
        .. code-block:: python
892 893 894 895

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
896
    """
Y
Yu Yang 已提交
897 898 899 900 901
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
902
            dtype=x.dtype)
Y
Yu Yang 已提交
903 904 905 906 907 908 909 910
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


911
def create_array(dtype):
912
    """
Q
qiaolongfei 已提交
913
    **Create LoDTensorArray**
914

Q
qiaolongfei 已提交
915 916
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
917 918

    Args:
Q
qiaolongfei 已提交
919
        dtype (int|float): The data type of the elements in the lod_tensor_array.
920 921

    Returns:
922
        Variable: The lod_tensor_array variable storing the elements of data type.
923 924 925 926 927 928 929

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
930 931 932 933 934 935 936
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
937
@templatedoc()
938
def less_than(x, y, force_cpu=None, cond=None):
939
    """
Y
yuyang18 已提交
940
    ${comment}
941

Y
yuyang18 已提交
942 943
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
944 945

    Args:
Y
yuyang18 已提交
946 947 948
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
949 950 951
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
952
        ${out_comment}.
953
    """
Y
Yang Yang(Tony) 已提交
954 955
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
956
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
957 958
        cond.stop_gradient = True

Y
yuyang18 已提交
959 960 961 962 963 964
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
965
    helper.append_op(
J
JiayiFeng 已提交
966 967 968 969
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
970
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
971 972 973
    return cond


974
def equal(x, y, cond=None):
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
993
        cond = helper.create_variable_for_type_inference(dtype='bool')
994 995 996 997 998 999 1000 1001
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1002
def array_read(array, i):
1003 1004
    """
    This function performs the operation to read the data in as an
1005
    LOD_TENSOR_ARRAY.
1006 1007 1008 1009 1010 1011

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1012

1013
        And:
1014

1015 1016 1017 1018 1019 1020
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1021
    Args:
1022 1023 1024
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1025 1026
    Returns:
        Variable: The tensor type variable that has the data written to it.
1027

K
kavyasrinet 已提交
1028
    Examples:
1029 1030
        .. code-block:: python

Z
zhaoyuchen 已提交
1031
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1032
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1033
          item = fluid.layers.array_read(array, i)
1034
    """
Y
Yu Yang 已提交
1035 1036 1037 1038 1039
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1040
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1041 1042 1043 1044 1045 1046
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1047 1048


1049
def shrink_memory(x, i, table):
1050
    """
Y
yuyang18 已提交
1051
    This function creates an operator to shrink rnn memory using the RankTable
1052
    as mentioned in the input parameter.
Y
yuyang18 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1073
    """
Y
Yang Yu 已提交
1074
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1075
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1076
    helper.append_op(
Y
Yang Yu 已提交
1077
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1078 1079 1080 1081 1082 1083
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1084 1085


1086
def array_length(array):
1087
    """
Q
qiaolongfei 已提交
1088
    **Get the Length of Input LoDTensorArray**
1089 1090

    This function performs the operation to find the length of the input
1091
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1092

1093 1094
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1095 1096 1097 1098 1099 1100 1101 1102
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1103
        .. code-block:: python
K
kavyasrinet 已提交
1104 1105 1106 1107 1108

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1109

1110
    """
Y
Yang Yu 已提交
1111
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1112
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1113 1114 1115 1116
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1117 1118 1119


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1120
    """
1121 1122 1123
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1124 1125 1126
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1168
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1169 1170 1171 1172
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1173
        self.is_scalar_condition = is_scalar_condition
1174
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1199
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1200 1201 1202
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1203 1204 1205 1206 1207
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1208 1209

        step_scope = parent_block.create_var(
1210
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1211 1212 1213
        parent_block.append_op(
            type='conditional_block',
            inputs={
1214 1215
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1216 1217 1218
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1219 1220 1221 1222 1223 1224 1225
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1226
    """
Q
qiaolongfei 已提交
1227 1228
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1229 1230 1231 1232

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1233

Q
qiaolongfei 已提交
1234
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1235 1236 1237 1238

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1239 1240 1241 1242

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1255
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1256 1257 1258
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1259 1260 1261

    """

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1291 1292
        """
        create a default case for this switch
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1361

X
improve  
Xin Pan 已提交
1362
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1363
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1364 1365
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1366 1367
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1368 1369
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1370 1371 1372 1373
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1374 1375 1376
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1377 1378 1379
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1380 1381 1382 1383
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1384
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1385 1386
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1387
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1399
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1400
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1401
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1402
                dtype=x.dtype)
Y
Yu Yang 已提交
1403 1404

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1405
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1406
                dtype=x.dtype)
Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1425
    def _parent_block(self):
Y
Yu Yang 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1441
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1442 1443 1444 1445 1446
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1447 1448
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1449
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1450 1451 1452
            out_table.append(outside_out)

            # assign local var to outside
1453
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1454 1455 1456 1457

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1458
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1477
                    level=0))
Y
Yu Yang 已提交
1478
        return rlist
1479 1480 1481


class DynamicRNN(object):
Y
yuyang18 已提交
1482
    """
Y
yuyang18 已提交
1483 1484 1485
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
C
chengduoZH 已提交
1513 1514 1515 1516
    
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
Y
yuyang18 已提交
1517
    """
1518 1519 1520 1521
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1522 1523
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1524 1525 1526 1527
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1528
        self.zero_idx = None
1529 1530 1531
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1532
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1533 1534 1535 1536 1537
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1538
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1539 1540
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1541

Y
yuyang18 已提交
1542 1543
        Args:
            x(Variable): The input sequence.
1544
            level(int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1545 1546 1547 1548

        Returns:
            The current timestep in the input sequence.
        """
1549 1550 1551
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1552
                "step_input() can only take a Variable as its input.")
1553 1554 1555
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1556
                name=unique_name.generate('lod_rank_table'),
1557 1558 1559 1560 1561
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1562 1563
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1564
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1565 1566
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1577 1578
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1579 1580

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1581
            name=unique_name.generate('dynamic_rnn_input_array'),
1582 1583 1584 1585 1586 1587 1588 1589
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1590
        return array_read(array=input_array, i=self.step_idx)
1591

Y
yangyaming 已提交
1592
    def static_input(self, x):
Y
yuyang18 已提交
1593 1594 1595
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
H
haowang101779990 已提交
1596

Y
yuyang18 已提交
1597 1598 1599 1600 1601 1602
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1612
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1622
    @signature_safe_contextmanager
1623
    def block(self):
Y
yuyang18 已提交
1624
        """
1625
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1626
        """
1627 1628
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1629 1630
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1631 1632 1633 1634
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1635
            increment(x=self.step_idx, value=1.0, in_place=True)
1636 1637

            for new_mem, mem_array in self.mem_link:
1638 1639
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1640 1641 1642 1643 1644
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1645 1646 1647 1648 1649

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1650
                    x=each_array, table=self.lod_rank_table))
1651 1652

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1653 1654 1655
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1656
        if self.status != DynamicRNN.AFTER_RNN:
1657 1658
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1659 1660 1661 1662 1663
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1664 1665 1666 1667 1668 1669
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1670
        """
Y
yuyang18 已提交
1671
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

H
haowang101779990 已提交
1720
            shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size.
Y
yuyang18 已提交
1721 1722 1723

            value(float): the initalized value.

H
haowang101779990 已提交
1724
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1725 1726 1727 1728

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1729
            The memory variable.
Y
yuyang18 已提交
1730
        """
1731
        self._assert_in_rnn_block_('memory')
1732
        self._init_zero_idx_()
1733 1734 1735 1736 1737
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1738 1739 1740 1741 1742 1743 1744 1745
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1746
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1757
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1758
                name=unique_name.generate('dynamic_rnn_mem_array'),
1759 1760 1761 1762
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1763
                inputs={'X': init_tensor,
1764 1765
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1766
            retv = array_read(array=mem_array, i=self.step_idx)
1767
            retv = shrink_memory(
1768
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1769 1770 1771 1772 1773 1774 1775 1776 1777
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1778
                name=unique_name.generate('mem_init'), dtype=dtype)
1779
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1780 1781
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1799 1800 1801
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
1802
        
Y
yuyang18 已提交
1803 1804 1805 1806 1807 1808 1809
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1827
        """
1828
        Mark the RNN output variables.
Y
yuyang18 已提交
1829 1830 1831 1832 1833 1834 1835

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1836 1837 1838 1839
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1840
                name=unique_name.generate("_".join(
1841 1842 1843 1844 1845 1846
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1875 1876


1877
@autodoc()
Y
Yang Yu 已提交
1878 1879 1880 1881 1882
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
1883
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1884 1885 1886 1887 1888 1889
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1890 1891


1892
def is_empty(x, cond=None):
1893
    """
F
fengjiayi 已提交
1894
    Test whether a Variable is empty.
1895 1896

    Args:
F
fengjiayi 已提交
1897
        x (Variable): The Variable to be tested.
1898
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
1899
                              of given 'x'. Default: None
1900 1901

    Returns:
F
fengjiayi 已提交
1902
        Variable: A bool scalar. True if 'x' is an empty Variable.
1903 1904 1905

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1906
                   not bool.
1907 1908 1909 1910

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1911 1912 1913
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1914 1915 1916
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
1917
        cond = helper.create_variable_for_type_inference(dtype='bool')
1918 1919 1920 1921 1922 1923 1924 1925 1926
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond