lstm_op.cc 11.9 KB
Newer Older
D
dangqingqing 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14

D
dangqingqing 已提交
15
#include "paddle/operators/lstm_op.h"
D
dangqingqing 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class LSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
27 28 29 30 31
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");

D
dangqingqing 已提交
32 33
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(Hidden) of LSTM should not be null.");
34
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
D
dangqingqing 已提交
35
                   "Output(Cell) of LSTM should not be null.");
36 37 38 39
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTM should not be null.");
D
dangqingqing 已提交
40

D
dangqingqing 已提交
41 42
    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
D
dangqingqing 已提交
43 44 45 46 47 48 49 50 51 52 53 54

    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(Cell) and Input(Hidden) of LSTM should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
    }

D
dangqingqing 已提交
55
    int frame_size = in_dims[1] / 4;
D
dangqingqing 已提交
56 57 58 59 60 61 62 63 64 65 66
    auto w_dims = ctx->GetInputDim("Weight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      frame_size);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);
67

D
dangqingqing 已提交
68 69 70 71
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
72 73

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
D
dangqingqing 已提交
74 75 76 77 78 79 80
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
Y
Yu Yang 已提交
81
                        "4 * %d if disable peepholes connection",
D
dangqingqing 已提交
82 83
                        frame_size);
    }
84

D
dangqingqing 已提交
85 86 87 88 89
    framework::DDim out_dims({in_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
D
dangqingqing 已提交
90 91 92
    ctx->ShareLoD("Input", "Hidden");
    ctx->ShareLoD("Input", "Cell");
  }
93 94 95 96 97 98 99

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(
        ctx.Input<framework::LoDTensor>("Input")->type());
  }
D
dangqingqing 已提交
100 101 102 103 104 105 106 107 108
};

class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LSTMOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
             "(LoDTensor) the first input is a LodTensor, which support "
             "variable-time length input sequence. The underlying tensor in "
D
dangqingqing 已提交
109
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
D
dangqingqing 已提交
110 111 112 113
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
K
kexinzhao 已提交
114
             "batch size and D is the hidden size.")
115
        .AsDispensable();
D
dangqingqing 已提交
116 117 118
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
119 120
             "batch size. `H0` and `C0` can be NULL but only at the same time")
        .AsDispensable();
D
dangqingqing 已提交
121 122
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
D
dangqingqing 已提交
123 124
             " - The shape is (D x 4D), where D is the hidden size. "
             " - Weight = {W_ch, W_ih, W_fh, W_oh}");
D
dangqingqing 已提交
125 126 127
    AddInput("Bias",
             "(Tensor) the learnable weights, which contains two parts: "
             "input-hidden bias weight and peephole connections weight if "
128 129
             "setting `use_peepholes` True. "
             "1. `use_peepholes = False` "
D
dangqingqing 已提交
130 131
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
132
             "2. `use_peepholes = True` "
D
dangqingqing 已提交
133
             " - The shape is (1 x 7D). "
134
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
D
dangqingqing 已提交
135
    AddOutput("Hidden",
D
dangqingqing 已提交
136 137
              "(LoDTensor) the hidden state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
D
dangqingqing 已提交
138
    AddOutput("Cell",
D
dangqingqing 已提交
139 140
              "(LoDTensor) the cell state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
141 142
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yu Yang 已提交
143
              "and output gate after the nonlinear computation. This "
K
kexinzhao 已提交
144
              "LoDTensor has the same shape as the reorganized input, which "
D
dangqingqing 已提交
145
              "is also be called batch input. The LoD size is 2. The first "
146 147 148
              "LoD is the batch offsets and the second LoD contains the "
              "indexes, which denote the position of reorganized sequence "
              "in the raw input.")
D
dangqingqing 已提交
149
        .AsIntermediate();
D
dangqingqing 已提交
150
    AddOutput("BatchCellPreAct",
K
kexinzhao 已提交
151
              "(LoDTensor) This LoDTensor is obtained in the forward and used "
D
dangqingqing 已提交
152 153
              "in the backward.")
        .AsIntermediate();
154
    AddAttr<bool>("use_peepholes",
D
dangqingqing 已提交
155 156 157
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
158
    AddAttr<bool>("is_reverse",
D
dangqingqing 已提交
159 160
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTM.")
161
        .SetDefault(false);
D
dangqingqing 已提交
162
    AddAttr<std::string>(
163
        "gate_activation",
Y
Yu Yang 已提交
164
        "(string, default: sigmoid)"
D
dangqingqing 已提交
165
        "The activation for input gate, forget gate and output "
Y
Yu Yang 已提交
166
        "gate, `sigmoid` by default.")
D
dangqingqing 已提交
167
        .SetDefault("sigmoid");
168
    AddAttr<std::string>("cell_activation",
Y
Yu Yang 已提交
169
                         "(string, default: tanh)"
D
dangqingqing 已提交
170 171
                         "The activation for cell output, `tanh` by defalut.")
        .SetDefault("tanh");
172
    AddAttr<std::string>("candidate_activation",
Y
Yu Yang 已提交
173
                         "(string, default: tanh)"
D
dangqingqing 已提交
174
                         "The activation for candidate hidden state, "
Y
Yu Yang 已提交
175
                         "`tanh` by default.")
D
dangqingqing 已提交
176
        .SetDefault("tanh");
K
kexinzhao 已提交
177 178
    AddComment(R"DOC(
Long-Short Term Memory (LSTM) Operator.
D
dangqingqing 已提交
179

K
kexinzhao 已提交
180 181
The defalut implementation is diagonal/peephole connection 
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
D
dangqingqing 已提交
182

K
kexinzhao 已提交
183 184
$$
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) \\
D
dangqingqing 已提交
185

K
kexinzhao 已提交
186
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) \\
D
dangqingqing 已提交
187

K
kexinzhao 已提交
188
\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) \\
D
dangqingqing 已提交
189

K
kexinzhao 已提交
190
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) \\
D
dangqingqing 已提交
191

K
kexinzhao 已提交
192
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
D
dangqingqing 已提交
193

K
kexinzhao 已提交
194 195
h_t = o_t \odot act_h(c_t)
$$
D
dangqingqing 已提交
196 197 198

where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix
of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$
K
kexinzhao 已提交
199 200
are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms
D
dangqingqing 已提交
201
denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$
K
kexinzhao 已提交
202 203 204
is the non-line activations, such as logistic sigmoid function, and
\f$i, f, o\f$ and \f$c\f$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
D
dangqingqing 已提交
205 206
the cell output activation vector \f$h\f$.

K
kexinzhao 已提交
207 208
The \f$\odot\f$ is the element-wise product of the vectors. \f$act_g\f$ and \f$act_h\f$
are the cell input and cell output activation functions and `tanh` is usually
D
dangqingqing 已提交
209 210 211
used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.

D
dangqingqing 已提交
212
Set `use_peepholes` False to disable peephole connection 
K
kexinzhao 已提交
213
(http://www.bioinf.jku.at/publications/older/2604.pdf). The formula
D
dangqingqing 已提交
214 215
is omitted here.

K
kexinzhao 已提交
216 217
Note that these \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$
operations on the input \f$x_{t}\f$ are NOT included in this operator.
D
dangqingqing 已提交
218
Users can choose to use fully-connect operator before LSTM operator.
D
dangqingqing 已提交
219 220 221 222 223 224 225 226 227

)DOC");
  }
};

class LSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

228
  void InferShape(framework::InferShapeContext* ctx) const override {
229 230 231 232 233 234
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(Hidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTM should not be null.");
235 236 237 238
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTM should not be null.");

    auto in_g_name = framework::GradVarName("Input");
    if (ctx->HasOutput(in_g_name))
      ctx->SetOutputDim(in_g_name, ctx->GetInputDim("Input"));

    auto w_g_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(w_g_name))
      ctx->SetOutputDim(w_g_name, ctx->GetInputDim("Weight"));

    auto b_g_name = framework::GradVarName("Bias");
    if (ctx->HasOutput(b_g_name))
      ctx->SetOutputDim(b_g_name, ctx->GetInputDim("Bias"));
256 257 258 259 260 261 262 263

    auto h0_g_name = framework::GradVarName("H0");
    if (ctx->HasOutput(h0_g_name))
      ctx->SetOutputDim(h0_g_name, ctx->GetInputDim("H0"));

    auto c0_g_name = framework::GradVarName("C0");
    if (ctx->HasOutput(c0_g_name))
      ctx->SetOutputDim(c0_g_name, ctx->GetInputDim("C0"));
D
dangqingqing 已提交
264
  }
265 266 267 268 269 270 271

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(
        ctx.Input<framework::LoDTensor>("Input")->type());
  }
D
dangqingqing 已提交
272 273 274 275 276 277 278 279 280 281 282 283
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(lstm, ops::LSTMOp, ops::LSTMOpMaker, lstm_grad, ops::LSTMGradOp);
REGISTER_OP_CPU_KERNEL(lstm, ops::LSTMKernel<paddle::platform::CPUPlace, float>,
                       ops::LSTMKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(lstm_grad,
                       ops::LSTMGradKernel<paddle::platform::CPUPlace, float>,
                       ops::LSTMGradKernel<paddle::platform::CPUPlace, double>);